The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

20241-20260hit(21534hit)

  • A Superior Estimator to the Maximum Likelihood Estimator on 3-D Motion Estimation from Noisy Optical Flow

    Toshio ENDOH  Takashi TORIU  Norio TAGAWA  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1240-1246

    We prove that the maximum likelihood estimator for estimating 3-D motion from noisy optical flow is not optimal", i.e., there is an unbiased estimator whose covariance matrix is smaller than that of the maximum likelihood estimator when a Gaussian noise distribution is assumed for a sufficiently large number of observed points. Since Gaussian assumption for the noise is given, the maximum likelihood estimator minimizes the mean square error of the observed optical flow. Though the maximum likehood estimator's covariance matrix usually reaches the Cramér-Rao lower bound in many statistical problems when the number of observed points is infinitely large, we show that the maximum likelihood estimator's covariance matrix does not reach the Cramér-Rao lower bound for the estimation of 3-D motion from noisy optical flow under such conditions. We formulate a superior estimator, whose covariance matrix is smaller than that of the maximum likelihood estimator, when the variance of the Gaussian noise is not very small.

  • Optoelectronic Mesoscopic Neural Devices

    Hideaki MATSUEDA  

     
    PAPER-Neural Network and Its Applications

      Vol:
    E77-A No:11
      Page(s):
    1851-1854

    A novel optoelectronic mesoscopic neural device is proposed. This device operates in a neural manner, involving the electron interference and the laser threshold characteristics. The optical output is a 2–dimensional image, and can also be colored, if the light emitting elements are fabricated to form the picture elements in 3–colors, i.e. R, G, and B. The electron waveguiding in the proposed device is analyzed, on the basis of the analogy between the Schrödinger's equation and the Maxwell's wave equation. The nonlinear neural connection is achieved, as a result of the superposition an the interferences among electron waves transported through different waveguides. The sizes of the critical elements of this device are estimated to be within the reach of the present day technology. This device exceeds the conventional VLSI neurochips by many orders of magnitude, in the number of neurons per unit area, as well as in the speed of operation.

  • Implementation Model and Execution Environment for Flexible Configuration of Telecommunication Information Systems

    Masato MATSUO  Yoshitsugu KONDO  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1312-1321

    We are developing GENESIS, a new seamless total environment for designing, developing, installing, and operating various types of telecommunication networks as extremely large distributed processing applications in the future network integrated by ATM. Similar uniform architectures for quick introduction and easy management of service or operation applications have been proposed, such as by TINA, but there has been insufficient study on how to operate and con figure those applications. This paper discusses the implementation model and execution environment in GENESIS from the viewpoint of flexible operation according to network conditions. The implementation model can describe detailed configurations under various conditions on design or operation, independently of the execution environment. To achieve the goals of GENESIS, our execution environment provides message handling functions and a transparent interface for controlling network resources independently of the configuration, and dynamic reconfiguration functions that are independent of the execution. This paper also reports the prototype system GENESIS-1. The GENESIS-1 message handling mechanism and the effect of the reconfiguration functions are described.

  • Distributed Communications System Technology

    Keiichi KOYANAGI  Hiroshi SUNAGA  Tetsuyasu YAMADA  Makoto TOMURA  Nobuaki KURIHARA  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1350-1362

    This paper describes two main technologies for achieving reliable real-time distributed communications systems. One is the technology to prevent the influence of a fault in an autonomous distributed system from spreading to the whole system (called autonomous distributed system control). The other is a software structure based on distributed processing, the object-oriented approach, and layering for better maintainability and expandability (called OO software structure). For the autonomous distributed system control, several inter-subsystem communication methods are proposed and evaluated. From the standpoints of the fault processing and processing load, frames should be sent through a data link over ATM connection and when a fault occurs the link should be switched over without loss of data. A pilot system achieved good reliability without an excessive number of dynamic steps. This autonomous control method will lead to a highly reliable communications system with large capacity. For the OO software structure, this paper gives experimental results from the implementation of a prototype system. Its distributed environment should lead to high reliability by extending the CHILL run-time routine (RTR). This software structure promises to provide service quickly, to reduce costs, and to make the development of each layer's software independent. A real-time OS, e.g., CTRON kernel combined with RTR can give real-time performance, high reliability and high productivity over the distributed system. The use of RTR can reduce the time for the call recovery process.

  • A Study of the Relationship between Contact Materials and Sticking Characteristics on Telecommunication Relay

    Hideki IWATA  Toshio OHYA  Shoji MITSUISHI  Hiroki MARUYAMA  

     
    PAPER-Contact Reliability

      Vol:
    E77-C No:10
      Page(s):
    1627-1633

    In this paper, the relationship between contact materials and sticking characteristics, and stability of contact resistance to obtain excellent contacts for telecommunication relays, is studied. The contact switching current for telecommunication relay is low. Moreover, contact force and opening force in these relay are respectively several mN. Nine kinds of contact materials are selected as a experimental factor. They are Ag, Ag-Ni (Ni: 0.03 to 20%), Ag-Cu 10%, Ag-Pd 60% and Pd-Ru 10%, and are overlaid with gold except Pd-Ru 10%. In this study, contact life tests on a commercial ultra-miniature telecommunication relay by mounting above-mentioned contacts are conducted. The sticking and the contact resistance are monitored at each switching operation in the contact life test. After the life test, the contact surfaces are observed, and the depth of crater, the height of pip and projected concave area are measured, then the relationship between the sticking morphologies and the composition of each material are studied. As the result of this study, the contact sticking of telecommunication rely is assumed to be the result of mechanical locking, and the effects of the Ni content in the Ag-Ni contacts is clarified. Moreover, it is confirmed that the effects of opening force on the sticking characteristics are remarkable.

  • A preconstrained Compaction Method Applied to Direct Design-Rule Conversion of CMOS Layouts

    Hiroshi MIYASHITA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:10
      Page(s):
    1684-1691

    This paper describes a preconstrained compaction method and its application to the direct design-rule conversion of CMOS layouts. This approach can convert already designed physical patterns into compacted layouts that satisfy user-specified design rules. Furthermore, preconstrained compaction can eliminate unnecessarily extended diffusion areas and polysilicon wires which tend to be created with conventional longest path based compactions. Preconstrained compaction can be constructed by combining a longest path algorithm with forward and backward slack processes and a preconstraint generation process. This contrasts with previously proposed approaches based on longest path algorithms followed by iterative improvement processes, which include applications of linear programming. The layout styles in those approaches are usually limited to a model where fixed-shaped rectilinear blocks are moved so as to minimize the total length of rectilinear interconnections among the blocks. However, preconstrained compaction can be applied to reshaping polygonal patterns such as diffusion and channel areas. Thus, this compaction method makes it possible to reuse CMOS leaf and macro cell layouts even if design rules change. The proposed preconstrained compaction approach has been applied to direct design-rule conversion from 0.8-µm to 0.5-µm rules of CMOS layouts containing from several to 10,195 transistors. Experimental results demonstrate that a 10.6% reduction in diffusion areas can be achieved without unnecessary extensions of polysilicon wires with a 39% increase in processing times compared with conventional approaches.

  • On Desirable Fault-Tolerant Topology for Cluster-Based Network

    Kenji ISHIDA  Tohru KIKUNO  

     
    PAPER

      Vol:
    E77-A No:10
      Page(s):
    1617-1622

    Management of control functions in large computer networks is a very difficult problem. One of the effective way to overcome the difficulty is to introduce hierarchical control structure (network cluster) in the management. When a fault occurred in the cluster, routing information at some nodes in the network must be updated in order to react the fault. However, the number of such nodes can be reduced by introducing ingenious topology into the cluster. This paper presents a fundamental discussion on network topology for a network cluster. First, L-FT is defined to represent a degree of fault-tolerance in a cluster with respect to link failures. Secondly, the minimum link problem M is defined to find the minimum number of links to make the cluster L-FT. The following results are obtained. (1) For a network cluster with the fault-tolerant topology 1-FT, at least 2n-2 links have to exist in the cluster where n is the number of border nodes in the cluster. (2) As far as connectivity of the whole network is held, for multiple L link failures in a L-FT cluster, the update of routing information at each node is localized within only the cluster containing the failed links. (3) Several hierarchical networks with fault-tolerant conditions are presented as case studies for a LAN and a MAN.

  • Contact Characterisitcs of New Self-Lubricating Composite Materials

    Yoshitada WATANABE  

     
    PAPER-Sliding Contacts

      Vol:
    E77-C No:10
      Page(s):
    1662-1667

    Composite materials of solid lubricants, such as graphite, MoS2, WS2, etc., and metals are being used as the sliding electrical contacts. However, few reports have so far been presented on the detailed characteristics of such composite materials. It is shown in this report that contact resistance and coefficient of friction of the sliding contact of the composite material of Cu-Nb system against Cu were higher than those of the sliding contact of the composite material of Cu-Sn system against Cu. It was, further, found that composite materials of Cu-Sn system were superior to those of Cu-Nb system being both contact resistances and coefficients of friction lowered. At the same time, it was found that performances of composite materials of Cu-Sn alloy base containing exclusively WS2 were superior to those containing both WS2 and MoS2. It was, therefore, suggested that proper samples suitable for the service conditions should be selected from the composite materials of Cu-Sn system which contain exclusively WS2 for the practical applications.

  • Applicability of Specific Rain Attenuation Models at Millimeter Wavelengths

    Toshio IHARA  

     
    LETTER-Antennas and Propagation

      Vol:
    E77-B No:10
      Page(s):
    1275-1278

    As a result of examination based on a newly available data set of millimeter-wave rain attenuation measured in the UK, it is found that the ITU-R specific rain attenuation model tends to appreciably underestimate millimeter-wave rain attenuation at frequencies above about 60GHz for the UK rain climate. This tendency is very similar to that previously reported for the Japanese experimental data at frequencies up to 245GHz. Furthermore, an alternative specific rain attenuation model based on the Japanese experimental data is found to be in fairly good agreement with the experimental data in the UK at frequencies up to 137GHz.

  • Constriction Resistance of Two Conducting Spots

    Hitoshi NISHIYAMA  Mitsunobu NAKAMURA  Isao MINOWA  

     
    PAPER-Simulation and AI-Technology

      Vol:
    E77-C No:10
      Page(s):
    1597-1605

    The electric or electronic circuits have many contact devices such as relay and switch. The contact between two nominally conducting flat surface has a lot of micro contact spots. The constriction resistance of the contact is known to determine the sum of the parallel resistance of the micro contacts and the interaction of them. The constriction resistance of two circular conducting spots was approximately formulated by Greenwood. This formulation shows that the interacted resistance of two circular spots is in inverse proportion to the distance between two conducting spots. It was known that this effect is introduced by the interaction between two conducting spots. However, the condition of interaction in the spots is not clear. Calculating the current density distribution in the spots is important to clarify the condition of interaction. The numerical analysis is very suitable to calculate the current density in the spots. In the fundamental case of the computation of the current density the boundary element method (BEM) is more efficient and accurate than that of the finite element method (FEM) because the boundary condition at the infinite is naturally satisfied and is not required a great number of the element in a wide space. In this paper the current density in the square spots is computed by the BEM. As the distance between two conducting spots becomes small, the current density in the two spots decreases. It becomes clear that the constriction resistance of conducting spots is increased by this effect. The decrease of current density by interaction is not uniformly, that at the near location to the opposite spot is larger than that at the far location in the same spot. In this paper the constriction resistance of two conducting spots is also considered. It was known that the constriction resistance of one conducting spot is not influenced by the form of spot very much. However, that of two conducting spots is not clear. The constriction resistance of two square spots is also computed by the BEM. The computed values of the constriction resistance of two square spots are compared with that of two circular spots by Greenwood's formulation and other results. As the result, it is clear that they have the considerable discrepancy. However, the trend of the variations is almost agree each other.

  • Characteristics and Static Fatigue Reliability of a Zirconia Alignment Sleeve for Optical Connectors

    Kazunori KANAYAMA  Yasuhiro ANDO  Shin'ichi IWANO  Ryo NAGASE  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1559-1566

    This paper describes the optical characteristics and static fatigue reliability of a zirconia alignment sleeve, which is a component part of an optical connector with zirconia ferrules. This combination of sleeve and ferrules hardly generates any wear debris during connector insertion and removal cycles. This has reduced the cleaning frequency of the ferrule endface during cycles and greatly improved the return loss stability of the optical connectors. The zirconia alignment sleeve enables stable return loss characteristics to be achieved over a wide temperature range as it has the same thermal expansion coefficient as the zirconia ferrule. Furthermore, the gauge retention force for the zirconia alignment sleeve is defined with a view to its practical use. This force must be between 2.0 and 3.9 N to allow stable optical connections to be made under various mechanical and environmental conditions. We also clarify the conditions for a proof test by which to prevent the occurrence of static fatigue fractures in the sleeve, and we confirm the validity of the test. The static fatigue parameters for zirconia ceramics and derived from the static fatigue theory for brittle materials and fracture testing. We use these static fatigue parameters to predict the lifetime of a zirconia sleeve under working stress. An appropriate stress level for the proof test which eliminates weak sleeves, is about 3 times greater than working stress. The strength of the sleeve as demonstrated in the proof test is confirmed by accelerative stress aging. The performance of this sleeve is superior to that of a conventional copper alloy sleeve and the proof test confirms its reliability; under 0.1 FIT for 20 years of use.

  • High-Density, High-Bandwidth Connectors for Broad-Band ISDN

    Ken-ichi NAKANO  Kei-ichi YASUDA  Tohru KISHIMOTO  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1567-1574

    High-speed pulse propagation, up to several hundred Mbps or higher, will play an important role in telecommunication systems for B-ISDN. High-performance packaging, especially high-speed, high-throughput interconnection, is strongly required. For advanced telecommunication systems, giga-bit signal transmission has been developed at the multi-chip module level, and 300 to 600 Mbps signal transmission has been reached at the printed circuit board level. Electrical inter-cabinet interconnections of 150 to 300 Mbps have been achieved for up to several tens of meters. High-speed, high-throughput connectors are the key to achieving high-performance telecommunication packaging systems. Two technologies are extremely important. One is for high-density, high-pin-count connectors, and the other is for high-speed signal transmission connectors. The requirements for the connectors needed for advanced high-performance telecommunication systems are described. Several high-density, high-bandwidth connectors developed for high-performance packaging system are introduced.

  • Coaxial SMD Module Connector for High-Speed MCM

    Shinichi SASAKI  Tohru KISHIMOTO  Nobuaki SUGIURA  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1575-1580

    This paper describes a trial coaxial surface mounted connector for PGA-type high-speed multichip modules (MCM). An MCM connector is needed to ensure testability and connection reliability of MCMs mounted on a printed circuit board. Our connector consists of a coaxial elements, a common ground housing made of conductive resin, and a ground contact spring plate. It has 68 signal contacts. We investigated the performance of this connector by experiment and simulation. Its insertion force is only about 53 gf per signal pin. The characteristic impedance is from 45.6 Ω to 61.4 Ω. The average resistance between two contacts is 28 mΩ with a deviation of less than plus or minus 5 mΩ. The insertion is -0.4 dB at 1.0 GHz. Crosstalk noise is less than 1.2%. This prototype connector can transmit pulses of up to 1.2 Gb/s, showing that it is applicable to high-speed MCMs.

  • Mapping QR Decomposition on Parallel Computers: A Study Case for Radar Applications

    Antonio d'ACIERNO  Michele CECCARELLI  Alfonso FARINA  Alfredo PETROSINO  Luca TIMMONERI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:10
      Page(s):
    1264-1271

    The sidelobe canceler in radar systems is a highly computational demanding problem. It can be efficiently tackled by resorting to the QR decomposition mapped onto a systolic array processor. The paper reports several mapping strategies by using massive parallel computers available on the market. MIMD as well as SIMD machines have been used, specifically MEIKO Computing Surface, nCUBE2, Connection Machine CM-200, and MasPar MP-1. The achieved data throughput values have been measured for a number of operational situations of practical interest.

  • Lower Bounds on Capacity and Cutoff Rate of Differential Overlapping Pulse Position Modulation in Optical Direct-Detection Channel

    Tomoaki OHTSUKI  Iwao SASASE  Shinsaku MORI  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:10
      Page(s):
    1230-1237

    We analyze the effect of overlapping technique on differential pulse position modulation (DPPM) in optical direct-detection channel when the pulsewidth and the average power of the channel are constrained. We refer to the modulation scheme employing an overlapping technique in DPPM as differential overlapping PPM (DOPPM). To avoid frame synchronization problems, we analyze the performance of DOPPM under the window scheme that results in lower bounds on the capacity and the cutoff rate of DOPPM but is easy to analyze. Under this scheme, we analyze the lower bounds on the capacity and the cutoff rate of DOPPM. It is shown that DOPPM with the window scheme has higher capacity and cutoff rate than PPM and DPPM, and also than OPPM when the average received number of photons per slot is somewhat large. The overlapping technique is thus shown to be effective on DPPM under the pulsewidth constraint when the average received number of photons per slot is somewhat large.

  • Recent Development of Testing System for Arcing Contacts

    Hideaki SONE  Tasuku TAKAGI  

     
    INVITED PAPER

      Vol:
    E77-C No:10
      Page(s):
    1545-1552

    Reliability of an electric contact can be defined by two parameters, contact resistance and wear, and the parameters of contacts operated in arcing condition are governed by the arc discharge. Thus the measurement on the relationship between the parameters and arc phenomena is necessary to improve the contact performance. The parameters for arcing electric contacts and problems were reviewed, and new concept for electric contact testing systems was proposed. Measurement with such an advanced system should be concurrent parallel measurement, quantitative measurement of degradation, systematic measurement, and analysis of arc discharge phenomena. Some examples of advanced measurement systems and new data obtained with such systems were described. Systematic results on relationships between condition and performance parameters were obtained by systematic measurement with systematically settled conditions, such as opening speed or material condition. A measurement method for the metallic phase arc duration was developed by the authors, and role of the metallic phase arc on contact performance parameters was found from interpretation of obtained data. The real-time surface profile measurement of an operating contact and the optical transient spectrum analyser for arc light radiated from breaking contact were also described.

  • Self-Holding Optical Switch Using Optical Matrix Board

    Shuichiro INAGAKI  Yoriko HANAOKA  Tsuneo KANAI  

     
    PAPER-Connectors: Optical and Conventional

      Vol:
    E77-C No:10
      Page(s):
    1553-1558

    A new self-holding optical switch that consists of an optical matrix board and a precision robot is proposed. Fabrication and evaluation of 33 optical matrix boards confirm the feasibility of large-size optical switching. Suppressing deviations in the groove position will realize lower loss optical matrix boards in the near future. The apparent roughness of the groove walls can be evaluated simply and effectively by measuring return loss with an interferometric optical-time-domain reflectometer.

  • T-Model Neural Network for PCM Encoding

    Zheng TANG  Okihiko ISHIZUKA  Masakazu SAKAI  

     
    LETTER-Neural Networks

      Vol:
    E77-A No:10
      Page(s):
    1718-1721

    A technique for pulse code modulation (PCM) encoding using a T-Model neural network is described. Performance evaluation on both the T-Model and the Hopfield model neural-based PCM encoders is carried out with PSpice simulations. The PSpice simulations also show that the T-Model neural-based PCM encoder computes to a global minimum much more effectively and more quickly than the Hopfield one.

  • A Petri Net Model for Nonmonotonic Reasoning Based on Annotated Logic Programs

    Chuang LIN  Tadao MURATA  

     
    INVITED PAPER

      Vol:
    E77-A No:10
      Page(s):
    1579-1587

    Nonmonotonic reasoning is a logical inference system which attempts to approximate human commonsense reasoning and is characterized as defeasible: having reasonably drawn a conclusion from some premises we may be forced to retract that conclusion upon learning new facts. This paper introduces a Petri net model for nonmonotonic reasoning with nonmonotonic rules generated by annotated logic programs and the unless operator. In the Petri net model, a fixpoint of a nonmonotonic theory can be represented as a maximal and consistent support of a firing sequence. We propose a structural method for finding extensions (coherent consequences) for a given set of nonmonotonic logic rules. It is based on the T-invariant technique for testing fireability of a goal transition in the Petri net model of Horn clause logic programs.

  • Theory of Chemical Waveguides

    Kazuya HAYATA  Masanori KOSHIBA  

     
    LETTER-Electromagnetic Theory

      Vol:
    E77-C No:10
      Page(s):
    1706-1709

    We predict that chemical waves can propagate as a guided mode in a reaction-diffusion system that consists of two regions with different wave speeds. In comparison with electromagnetic waveguides, unique features of the guided chemical waves can be seen in their dispersion characteristics. Conditions for supporting lowest-loss guided waves are discussed.

20241-20260hit(21534hit)