The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

20321-20340hit(21534hit)

  • An Error-Controlling Scheme according to the Importance of Individual Segments of Model-Based Coded Facial Images

    Noriko SUZUKI  Taroh SASAKI  Ryuji KOHNO  Hideki IMAI  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1289-1297

    This paper proposes and investigates an intelligent error-controlling scheme according to different importance of segmental information. In particular, the scheme is designed for facial images encoded by model-based coding that is a kind of intelligent compression coding. Intelligent communication systems regard the contents of information to be transmitted with extremely high compression and reliability. After highly efficient information compression by model-beaed coding, errors in the compressed information lead to severe semantic errors. The proposed scheme reduces semantic errors of information for the receiver. In this paper, we consider Action Unit (AU) as a segment of model-based coded facial image of human being and define the importance for each AU. According to the importance, an AU is encoded by an appropriated code among codes with different error-correcting capabilities. For encoding with different error controlling codes, we use three kinds of constructions to obtain unequal error protection (UEP) codes in this paper. One of them is the direct sum construction and the others are the proposed constructions which are based on joint and double coding. These UEP codes can have higher coderate than other UEP codes when minimum Hamming distance is small. By using these UEP codes, the proposed intelligent error-controlling scheme can protect information in segment in order to reduce semantic errors over a conventional error-controlling scheme in which information is uniformly protected by an error-correcting code.

  • The Improvement of Compositional Distribution in Depth and Surface Morphology of YBa2Cu3O7-δ-SrTiOx Multilayers

    Chien Chen DIAO  Gin-ichiro OYA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1209-1217

    Almost stoichiometric YBa2Cu3O7-δ(110) or (103) and SrTiOx(110) films, and multilayer films consisting of them have successfully been grown epitaxially on hot SrTiO3 substrates by 90off-axis rf magnetron sputtering with facing targets. Their whole composition, compositional distribution in depth, crystallinity and surface morphology were examined by inductively coupled plasma spectroscopy, Auger electron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy or atomic force microscope, respectively. When any YBa2Cu3O7-δ film was exposed to air after deposition, a Ba-rich layer was formed in a near surface region of the film. However, such a compositional distribution in depth of the film was improved by in situ deposition of a SrTiOx film on it. Moreover, the surface roughness of the YBa2Cu3O7-δ film was improved by predeposition of a SrTiOx film under it. On the basis of these results, both YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiO3(sub.) and YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiOx/SrTiO3(sub.) multilayer films with average surface roughness of 3 nm were grown reproducibly, which had uniform compositional distribution throughout the depth of the film except a near surface region of the top YBa2Cu3O7-δ layer. A new 222 structure described by Sr8Ti8O20 (Sr2Ti2O5) with a long range ordered arrangement of oxygen vacancies was formed in the SrTiOx films deposited epitaxially on YBa2Cu3O7-δ films.

  • Capacity and Cutoff Rate of Overlapping Multi-Pulse Pulse Position Modulation (OMPPM) in Optical Direct-Detection Channel: Quantum-Limited Case

    Tomoaki OHTSUKI  Iwao SASASE  Shinsaku MORI  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1298-1308

    Overlapping multi-pulse pulse position modulation (OMPPM) is a modulation scheme having higher capacity and cutoff rate than other conventional modulation schemes when both off-duration between pulses shorter than a laser pulsewidth and resolution better than a laser pulsewidth are realized [1],[2]. In Refs. [1],[2] erasure events of a few chips that can be decoded correctly is defined as an erasure event. This results in lower bounds on the performance of OMPPM in optical-direct-detection channel in quantum limited case. This paper analyzes more exact performance of OMPPM in optical direct-detection channel in quantum limited case when both off-duration between pulses shorter than a laser pulsewidth and resolution better than a laser pulsewidth are realized. First we derive the error probability of OMPPM with considering what chips are detected or erased. Then we derive the capacity and the cutoff rate of OMPPM using the error probability. It is shown that OMPPM outperforms on-off keying (OOK), pulse position modulation (PPM), multi-pulse PPM (MPPM), and overlapping PPM (OPPM) in terms of both capacity and cutoff rate for the same pulsewidth and the same duty cycle. Moreover, it is shown that OMPPM with fewer slots and more pulses per block has better cutoff rate performance when the average received power per slot is somewhat large.

  • Stochastic Signal Processing for Incomplete Observations under the Amplitude Limitations in Indoor and Outdoor Sound Environments Based on Regression Analysis

    Noboru NAKASAKO  Mitsuo OHTA  Hitoshi OGAWA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1353-1362

    A specific signal in most of actual environmental systems fluctuates complicatedly in a non-Gaussian distribution form, owing to various kinds of factors. The nonlinearity of the system makes it more difficult to evaluate the objective system from the viewpoint of internal physical mechanism. Furthermore, it is very often that the reliable observation value can be obtained only within a definite domain of fluctuating amplitude, because many of measuring equipment have their proper dynamic range and the original random wave form is unreliable at the end of amplitude fluctuation. It becomes very important to establish a new signal processing or an evaluation method applicable to such an actually complicated system even from a functional viewpoint. This paper describes a new trial for the signal processing along the same line of the extended regression analysis based on the Bayes' theorem. This method enables us to estimate the response probability property of a complicated system in an actual situation, when observation values of the output response are saturated due to the dynamic range of measuring equipment. This method utilizes the series expansion form of the Bayes' theorem, which is applicable to the non-Gaussian property of the fluctuations and various kinds of correlation information between the input and output fluctuations. The proposed method is newly derived especially by paying our attention to the statistical information of the input-output data without the saturation operation instead of that on the resultantly saturated observation, differing from the well-known regression analysis and its improvement. Then, the output probability distribution for another kind of input is predicted by using the estimated regression relationship. Finally, the effectiveness of the proposed method is experimentally confirmed too by applying it to the actual data observed for indoor and outdoor sound environments.

  • Ultrafast Single-Shot Water and Fat Separated Imaging with Magnetic Field Inhomogeneities

    Shoichi KANAYAMA  Shigehide KUHARA  Kozo SATOH  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E77-D No:8
      Page(s):
    918-924

    Ultrafast MR imaging (e.g., echo-planar imaging) acquires all the data within only several tens of milliseconds. This method, however, is affected by static magnetic field inhomogeneities and chemical shift; therefore, a high degree of field homogeneity and water and fat signal separation are required. However, it is practically impossible to obtain an homogeneous field within a subject even if in vivo shimming has been performed. In this paper, we describe a new ultrafast MR imaging method called Ultrafast Single-shot water and fat Separated Imaging (USSI) and a correction method for field inhomogeneities and chemical shift. The magnetic field distribution whthin the subject is measured before thd scan and used to obtain images without field inhomogeneity distortions. Computer simulation results have shown that USSI and the correction method can obtain water and fat separated images as real and imaginary parts, respectively, of a complex Fourier transform with a single-shot scan. Image quality is maintained in the presence of field inhomogeneities of several ppm similar to those occurring under practical imaging conditions. Limitations of the correction method are also discussed.

  • A Capacitor-Error-Free SC Voltage Inverter with Zero Sensitivity to Element-Value Variations

    Sin Eam TAN  Takahiro INOUE  Fumio UENO  

     
    LETTER-Switched Capacitor Circuits

      Vol:
    E77-A No:8
      Page(s):
    1407-1408

    A capacitor-error-free SC voltage inverter with zero sensitivity to element-value variations is proposed. By virtue of the capacitor-error-free property, this SC voltage inverter is free from the capacitor mismatch. The performance of this SC voltage inverter has been confirmed from both the simulation and experiment.

  • Analysis of an Open-Ended Waveguide as a Probe for Near Field Antenna Measurements by Using TLM Method

    Yoshiyuki FUJINO  Cheuk-yu Edward TONG  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:8
      Page(s):
    1048-1055

    To increase the accuracy of a near field antenna measurement system, it is necessary to know radiation characteristics of a probe to detect near field data. Open ended waveguide used as a near field probe in our system was analyzed using Transmission Line Matrix (TLM) method which is a time domain electromagnetic solver. Validity of this analysis has been confirmed by comparison with experimental data and existing theoretical approximation. Frequency dependence of a complex reflection coefficient at the waveguide aperture has been derived and is shown to agree with measured values. The radiation pattern of the open ended waveguide with mounting structure is also calculated. Ripples on both the amplitude and phase patterns are correctly predicted by our simulation. This method can be applied to accurately model the effect of probe antennas to enhance the accuracy of near field antenna range.

  • A Resistor Coupled Josephson Polarity-Convertible Driver

    Shuichi NAGASAWA  Shuichi TAHARA  Hideaki NUMATA  Yoshihito HASHIMOTO  Sanae TSUCHIDA  

     
    PAPER-LTS

      Vol:
    E77-C No:8
      Page(s):
    1176-1180

    A polarity-convertible driver is necessary as a basic component of several Josephson random access memories. This driver must be able to inject a current having positive or negative polarity into a load transmission line such as a word or bit line of the RAM. In this paper, we propose a resistor coupled Josephson polarity-convertible driver which is highly sensitive to input signals and has a wide operating margin. The driver consists of several Josephson junctions and several resistors. The input signal is directly injected to the driver through the resistors. The circuit design is discussed on the operating principle of the driver. The driver is fabricated by 1.5 µm Nb technology with Nb/AlOx/Nb Josephson junctions, two layer Nb wirings, an Nb ground plane, Mo resistors, and SiO2 insulators. The Nb/AlOx/Nb Josephson junctions are fabricated using technology refined for sub-micron size junctions. The insulators between wirings are formed using bias sputtering technique to obtain good step coverage. The driver circuit size is 53 µm34 µm. Measurements are carried out at 10 kHz to quasistatically test the polarity-convertible function and the operating margin of the driver. Proper polarity-convertible operation is confirmed for a large operating bias margin of 70% at a fairly small input current of 0.3 mA.

  • Distortion-Complexity and Rate-Distortion Function

    Jun MURAMATSU  Fumio KANAYA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1224-1229

    We define the complexity and the distortion-complexity of an individual finite length string from a finite set. Assuming that the string is produced by a stationary ergodic source, we prove that the distortion-complexity per source letter and its expectation approximate arbitrarily close the rate-distortion function of this source as the length of the string grows. Furthermore, we apply this property to construct a universal data compression scheme with distortion.

  • Necessary and Sufficient Conditions for Unidirectional Byte Error Locating Codes

    Shuxin JIANG  Eiji FUJIWARA  

     
    PAPER

      Vol:
    E77-A No:8
      Page(s):
    1246-1252

    The byte error locating codes specify the byte location in which errors are occurred without indicating the precise location of erroneous bit positions. This type of codes is considered to be useful for fault isolation and reconfiguration in the fault-tolerant computer systems. In this paper, difference between the code function of error-location and that of error-correction/error-detection is clarified. With using the concepts of unidirectional byte distance, unordered byte number and ordered byte number, the necessary and sufficient conditions of the unidirectional byte error locating codes are demonstrated.

  • Low-Voltage and Low-Power ULSI Circuit Techniques

    Masakazu AOKI  Kiyoo ITOH  

     
    INVITED PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1351-1360

    Recent achievements in low-voltage and low-power circuit techniques are reported in this paper. DC current in low-voltage CMOS circuits stemming from the subthreshold current in MOS transistors, is effectively reduced by applying switched-power-line schemes. The AC current charging the capacitance in DRAM memory arrays is reduced by a partial activation of array blocks during the active mode and by a charge recycle during the refresh mode. A very-low-power reference-voltage generator is also reported to control the internal chip voltage precisely. These techniques will open the way to using giga-scale LSIs in battery-operated portable equipment.

  • Properties of Thin-Film Thermal Switches for High-Tc Superconductive Filter

    Yasuhiro NAGAI  Naobumi SUZUKI  Osamu MICHIKAMI  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1229-1233

    This paper reports on the properties of thin-film thermal switches that are monolithically fabricated on high-Tc superconductive filter. Operating at a wide temperature range of 50-77 K, it was found that the switch could control the center frequency by -10 MHz with an increased insertion loss of less than 0.7 dB. In an on-off switching operation of filter characteristics using thin-film switches, power consumption was approximately 20 mW at 77 K, and the signal decay time as a switching speed was 30 ms at 76 K with a switch current of 70 mA. The decay time decreased exponentially as the switch current or the temperature setting increased.

  • High-Density Full-CMOS SRAM Cell Technology with a Deep Sub-Micron Spacing between nMOS and pMOSFET

    Fumitomo MATSUOKA  Kazunari ISHIMARU  Hiroshi GOJOHBORI  Hidetoshi KOIKE  Yukari UNNO  Manabu SAI  Toshiyuki KONDO  Ryuji ICHIKAWA  Masakazu KAKUMU  

     
    PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1385-1394

    A full CMOS cell technology for high density SRAMs has been developed. A 0.4 µm n+/p+ spacing has been achieved by a shallow trench isolation with a retrograde and a shallow well design. Dual gate 0.35 µm n- and p-channel MOSFETs were used for the high density full CMOS SRAM cell. The side-wall inversion problem to which MOSFETs are subject due to the trench isolation structure has been controlled by combining taper angled trench etching and a rounded trench edge shape. A dual gate 0.4 µm nMOS/pMOS spacing has also been accomplished with no lateral gate dopant diffusion by an enlarged grain size tungsten polycide gate structure. These techniques can resolve the bottleneck problem of full CMOS SRAM cell size reduction, and realize a competitive cell size against conventional polysilicon resistor load SRAM cell (E/R type cell) or thin-film-transistor load SRAM cell (TFT type cell) structures. A test chip of a 256 k bit full CMOS SRAM was fabricated to verify the process integration of the shallow trench isolation with the retrograde shallow well design and the dual gate CMOS structure. It has been recognized that the above techniques are possible solutions for deep sub-micron high density full CMOS SRAM cell structure.

  • Weak Link Array Junctions in EuBa2Cu3O7-x Films for Microwave Detection

    Koji TSURU  Osamu MICHIKAMI  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1224-1228

    High temperature superconductors are eminently suitable for use in high frequency devices because of their large energy gap. We fabricated weak link Josephson junctions connected in series. The junctions were constructed of EuBa2Cu3O7-x (EBCO) superconducting thin films on bicrystal MgO substrates. We measured their microwave broadband detection (video detection) characteristics. The responsivity (Sr) of the junctions depended on the bias current and their normal state resistance. The array junctions were effective in increasing normal state resistance. We obtained a maximum Sr of 22.6 [V/W].

  • Data Retention Characteristics of Flash Memory Cells after Write and Erase Cycling

    Seiichi ARITOME  Riichiro SHIROTA  Koji SAKUI  Fujio MASUOKA  

     
    PAPER-Non-volatile Memory

      Vol:
    E77-C No:8
      Page(s):
    1287-1295

    The data retention characteristics of a Flash memory cell with a self-aligned double poly-Si stacked structure have been drastically improved by applying a bi-polarity write and erase technology which uses uniform Fowler-Nordheim tunneling over the whole channel area both during write and erase. It is clarified experimentally that the detrapping of electrons from the gate oxide to the substrate results in an extended retention time. A bi-polarity write and erase technology also guarantees a wide cell threshold voltage window even after 106 write/erase cycles. This technology results in a highly reliable EEPROM with an extended data retention time.

  • Process and Device Technologies for Subhalf-Micron LSI Memory

    Katsuhiro TSUKAMOTO  Hiroaki MORIMOTO  

     
    INVITED PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1343-1350

    The progress of LSI technologies makes it possible to fabricate 256 MDRAM. However, it depends on the cost effectiveness of device fabrication that LSI memory can continue to be the technology driver or not. It is indispensable to make the device, process, and equipment as simple as possible for next generation LSI. For example, wavefront technologies in lithography, high energy ion implantation, and simple DRAM cell with SOI structure or high dielectric constant capacitor, are under development to satisfy both device performance improvement and process simplicity.

  • A Note on Inadequacy of the Model for Learning from Queries

    Ryuichi NAKANISHI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:8
      Page(s):
    861-868

    Learning correctly from queries" is a formal learning model proposed by Angluin. In this model, for a class Γ of language representations, a learner asks queries to a teacher of an unknown language Lq which can be represented by some GqΓ, and eventually outputs a language representation GΓ which represents Lq and halts. An algorithm (leaner) A is said to learn a class of languages represented by Γ in the weak definition if the time complexity of A is some polynomial of n and m, where n is the minimum size of the lagunage representations in Γ which represent Lq, and m is the maximum length of the counterexamples returned in an execution. On the other band, A is said to learn represented by Γ in the strong definition if at any point τ of the execution, the time consumed up to τ is some polynomial of n and m, where n is the same as above, and m is the maximum length of the counterexamples returned up to τ. In this paper, adequacy of the model is examined, and it is shown that both in the weak and strong definitions, there exist learners which extract a long counterexample, and identify Lq by using equivalence queries exhaustively. For example, there exists a learner which learns the class CFL of context-free languages represented by the class CFG of context-free grammars in the weak definition using only equivalence queries. Next, two restrictions concerning with learnability criteria are introduced. Proper termination condition is that when a teacher replies with yes" to an equivalence query, then the learner must halt immediately. The other condition, called LBC-condition, is that in the weak/strong definition, the time complexity must be some polynomial of n and log m. In this paper, it is shown that under these conditions, there still exist learners which execute exhaustive search. For instance, there exists a learner which learns CFL represented by CFG in the weak definition using membership queries and equivalence queries under the proper termination condition, and there also exists a learner that learns CFL represented by CFG in the strong definition using subset queries and superset queries under LBC-condition. These results suggest that the weak definition is not an adequate learning model even if the proper termination condition is assumed. Also, the model becomes inadequate in the strong definition if some combination of queries, such as subset queries and superset queries, is used instead of equivalence queries. Many classes of languages become learnable by our extracting long counterexample" technique. However, it is still open whether or not CFL represented by CFG is learnable in the strong definition from membership queries and equivalence queries, although the answer is known to be negative if at least one of (1) quadratic residues modulo a composite, (2) inverting RSA encryption, or (3) factoring Blum integers, is intractable.

  • A Flexible Search Managing Circuitry for High-Density Dynamic CAMs

    Takeshi HAMAMOTO  Tadato YAMAGATA  Masaaki MIHARA  Yasumitsu MURAI  Toshifumi KOBAYASHI  Hideyuki OZAKI  

     
    PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1377-1384

    New circuit techniques were proposed to realize a high-density and high-performance content addressable memory (CAM). A dynamic register which functions as a status flag, and some logic circuits are organically combined and flexibly perform complex search operations, despite the compact layout area. Any kind of logic operations for the search results, that are AND, OR, INVERT, and the combinations of them, can be implemented in every word simultaneously. These circuits are implemented in an experimental 288 kbit dynamic CAM using 0.8 µm CMOS process technology. We consider these techniques to be indispensable for high-density and high-performance dynamic CAM.

  • Piecewise Parametric Cubic Interpolation

    Caiming ZHANG  Takeshi AGUI  Hiroshi NAGAHASHI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E77-D No:8
      Page(s):
    869-876

    A method is described for constructing an interpolant to a set of arbitrary data points (xi, yi), i1, 2, , n. The constructed interpolant is a piecewise parametric cubic polynomial and satisfies C1 continuity, and it reproduces all parametric polynomials of degree two or less exactly. The experiments to compare the new method with Bessel method and spline method are also shown.

  • CMOS Embedded RAMs for Digital Communication Systems

    Masao MIZUKAMI  Yoichi SATOH  Takahiko KOZAKI  Yasuo MIKAMI  

     
    PAPER-General Technology

      Vol:
    E77-C No:8
      Page(s):
    1361-1368

    This paper describes CMOS embedded RAMs we developed utilizing 1.3 µm and 0.8 µm process technologies. Our goal was to achieve high-performance switching for digital communication systems. Because such switching can best be obtained by using high-performance embedded RAMs, we used 0.8 µm process technology and developed a 4 kW9 b single-port embedded RAM with 5 ns access time and 100 mW power dissipation during32 MHz operation, and a 1 kW9 b dual-port embedded RAM with 3.7 ns access time and 100 mW power dissipation during 40 MHz operation. We implemented these RAMs on one chip in developing three time-switch VLSIs, one buffer memory VLSI for ATM switches, and two cross-connect switch VLSIs.

20321-20340hit(21534hit)