The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

4481-4500hit(21534hit)

  • Improvement of Reliability Evaluation for 2-Unit Parallel System with Cascading Failures by Using Maximal Copula

    Shuhei OTA  Takao KAGEYAMA  Mitsuhiro KIMURA  

     
    LETTER

      Vol:
    E98-A No:10
      Page(s):
    2096-2100

    In this study, we investigate whether copula modeling contributes to the improvement of reliability evaluation in a cascading failure-occurrence environment. In particular, as a basic problem, we focus on a 2-unit parallel system whose units may fail dependently each other. As a result, the reliability assessment of the system by using the maximal copula provides more accurate evaluation than the traditional Weibull analysis, if the degree of dependency between two units are high. We show this result by using several simulation studies.

  • Algorithm for Obtaining Optimal Arrangement of a Connected-(r,s)-out-of-(m,n): F System — The Case of m=r and s=2 —

    Toru OMURA  Tomoaki AKIBA  Xiao XIAO  Hisashi YAMAMOTO  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2018-2024

    A connected-(r,s)-out-of-(m,n): F system is a kind of the connected-X-out-of-(m,n): F system defined by Boehme et al. [2]. A connected-(r,s)-out-of-(m,n): F system consists of m×n components arranged in (m,n)-matrix. This system fails if and only if there exists a grid of size r×s in which all components are failed. When m=r, this system can be regarded as a consecutive-s-out-of-n: F system, and then the optimal arrangement of this system satisfies theorem which stated by Malon [9] in the case of s=2. In this study, we proposed a new algorithm for obtaining optimal arrangement of the connected-(r,2)-out-of-(m,n): F system based on the above mentioned idea. We performed numerical experiments in order to compare the proposed algorithm with the algorithm of enumeration method, and calculated the order of the computation time of these two algorithms. The numerical experiments showed that the proposed algorithm was more efficiently than the algorithm of enumeration method.

  • Robust Voice Activity Detection Algorithm Based on Feature of Frequency Modulation of Harmonics and Its DSP Implementation

    Chung-Chien HSU  Kah-Meng CHEONG  Tai-Shih CHI  Yu TSAO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2015/07/10
      Vol:
    E98-D No:10
      Page(s):
    1808-1817

    This paper proposes a voice activity detection (VAD) algorithm based on an energy related feature of the frequency modulation of harmonics. A multi-resolution spectro-temporal analysis framework, which was developed to extract texture features of the audio signal from its Fourier spectrogram, is used to extract frequency modulation features of the speech signal. The proposed algorithm labels the voice active segments of the speech signal by comparing the energy related feature of the frequency modulation of harmonics with a threshold. Then, the proposed VAD is implemented on one of Texas Instruments (TI) digital signal processor (DSP) platforms for real-time operation. Simulations conducted on the DSP platform demonstrate the proposed VAD performs significantly better than three standard VADs, ITU-T G.729B, ETSI AMR1 and AMR2, in non-stationary noise in terms of the receiver operating characteristic (ROC) curves and the recognition rates from a practical distributed speech recognition (DSR) system.

  • NHPP-Based Software Reliability Model with Marshall-Olkin Failure Time Distribution

    Xiao XIAO  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2060-2068

    A new modeling approach for the non-homogeneous Poisson processes (NHPPs) based software reliability modeling is proposed to describe the stochastic behavior of software fault-detection processes, of which the failure rate is not monotonic. The fundamental idea is to apply the Marshall-Olkin distribution to the software fault-detection time distribution. The applicability of Marshall-Olkin distribution in software reliability modeling is studied. The data fitting abilities of the proposed NHPP-based software reliability model is compared with the existing typical ones through real software project data analysis.

  • Software Reliability Assessment with Multiple Changes of Testing-Environment

    Shinji INOUE  Shigeru YAMADA  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2031-2041

    We discuss software reliability assessment considering multiple changes of software fault-detection phenomenon. The testing-time when the characteristic of the software failure-occurrence or fault-detection phenomenon changes notably in the testing-phase of a software development process is called change-point. It is known that the occurrence of the change-point influences the accuracy for the software reliability assessment based on a software reliability growth models, which are mainly divided into software failure-occurrence time and fault counting models. This paper discusses software reliability growth modeling frameworks considering with the effect of the multiple change-point occurrence on the software reliability growth process in software failure-occurrence time and fault counting modeling. And we show numerical illustrations for the software reliability analyses based on our models by using actual data.

  • Matrix Approach for the Seasonal Infectious Disease Spread Prediction

    Hideo HIROSE  Masakazu TOKUNAGA  Takenori SAKUMURA  Junaida SULAIMAN  Herdianti DARWIS  

     
    PAPER

      Vol:
    E98-A No:10
      Page(s):
    2010-2017

    Prediction of seasonal infectious disease spread is traditionally dealt with as a function of time. Typical methods are time series analysis such as ARIMA (autoregressive, integrated, and moving average) or ANN (artificial neural networks). However, if we regard the time series data as the matrix form, e.g., consisting of yearly magnitude in row and weekly trend in column, we may expect to use a different method (matrix approach) to predict the disease spread when seasonality is dominant. The MD (matrix decomposition) method is the one method which is used in recommendation systems. The other is the IRT (item response theory) used in ability evaluation systems. In this paper, we apply these two methods to predict the disease spread in the case of infectious gastroenteritis caused by norovirus in Japan, and compare the results obtained by using two conventional methods in forecasting, ARIMA and ANN. We have found that the matrix approach is simple and useful in prediction for the seasonal infectious disease spread.

  • A Note on Two-Dimensional Optical Orthogonal Codes

    Lin-Zhi SHEN  Xuan GUANG  

     
    LETTER-Coding Theory

      Vol:
    E98-A No:10
      Page(s):
    2207-2208

    Let v=p1m1p2m2…ptmt be the canonical prime factorization of v. In this paper, we give a construction of optimal ((s+1)×v,s+1,1) two-dimensional optical orthogonal codes with both at most one-pulse per wavelength and at most one-pulse per time slot, where s | gcd(p1-1,p2-1,...,pt-1). The method is much simpler than that in [1]. Optimal (m×v,k,1) two-dimensional optical orthogonal codes are also constructed based on the Steiner system S[2,k,m].

  • Robust Synchronization of Uncertain Fractional Order Chaotic Systems

    Junhai LUO  Heng LIU  Jiangfeng YANG  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:10
      Page(s):
    2109-2116

    In this paper, synchronization for uncertain fractional order chaotic systems is investigated. By using the fractional order extension of the Lyapunov stability criterion, a linear feedback controller and an adaptive controller are designed for synchronizing uncertain fractional order chaotic systems without and with unknown external disturbance, respectively. Quadratic Lyapunov functions are used in the stability analysis of fractional-order systems, and fractional order adaptation law is constructed to update design parameter. The proposed methods can guarantee that the synchronization error converges to zero asymptotically. Finally, illustrative examples are given to confirm the theoretical results.

  • Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks Open Access

    Kei SAKAGUCHI  Ehab Mahmoud MOHAMED  Hideyuki KUSANO  Makoto MIZUKAMI  Shinichi MIYAMOTO  Roya E. REZAGAH  Koji TAKINAMI  Kazuaki TAKAHASHI  Naganori SHIRAKATA  Hailan PENG  Toshiaki YAMAMOTO  Shinobu NANBA  

     
    INVITED PAPER

      Vol:
    E98-B No:10
      Page(s):
    1932-1948

    Millimeter-wave (mmw) frequency bands, especially 60GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is distributed antenna type architecture to realize centralized coordination, while the other is autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

  • A New Method of Storing Integral Image for Memory Efficiency Using Modified Block Structure

    Su-hyun LEE  Yong-jin JEONG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/07/13
      Vol:
    E98-D No:10
      Page(s):
    1888-1891

    Integral image is the sum of input image pixel values. It is mainly used to speed up the process of a box filter operation, such as Haar-like features. However, large memory capacity for integral image data can be an obstacle in an embedded environment with limited hardware. In a previous research, [5] reduced the size of integral image memory using 2×2 block structure with additional calculations. It can be easily extended to n×n block structure for further reduction, but it requires more additional calculations. In this paper, we propose a new block structure for the integral image by modifying the location of the reference pixel in the block. It results in much less additional calculations by reducing the number of memory accesses, while keeping the same amount of memory as the original block structure.

  • A Brief Proof of General QAM Golay Complementary Sequences in Cases I-III Constructions

    Fanxin ZENG  Zhenyu ZHANG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:10
      Page(s):
    2203-2206

    By investigating the properties that the offsets should satisfy, this letter presents a brief proof of general QAM Golay complementary sequences (GCSs) in Cases I-III constructions. Our aim is to provide a brief, clear, and intelligible derivation so that it is easy for the reader to understand the known Cases I-III constructions of general QAM GCSs.

  • Separation of Mass Spectra Based on Probabilistic Latent Component Analysis for Explosives Detection

    Yohei KAWAGUCHI  Masahito TOGAMI  Hisashi NAGANO  Yuichiro HASHIMOTO  Masuyuki SUGIYAMA  Yasuaki TAKADA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1888-1897

    A new algorithm for separating mass spectra into individual substances for explosives detection is proposed. In the field of mass spectrometry, separation methods, such as principal-component analysis (PCA) and independent-component analysis (ICA), are widely used. All components, however, have no negative values, and the orthogonality condition imposed on components also does not necessarily hold in the case of mass spectra. Because these methods allow negative values and PCA imposes an orthogonality condition, they are not suitable for separation of mass spectra. The proposed algorithm is based on probabilistic latent-component analysis (PLCA). PLCA is a statistical formulation of non-negative matrix factorization (NMF) using KL divergence. Because PLCA imposes the constraint of non-negativity but not orthogonality, the algorithm is effective for separating components of mass spectra. In addition, to estimate the components more accurately, a sparsity constraint is applied to PLCA for explosives detection. The main contribution is industrial application of the algorithm into an explosives-detection system. Results of an experimental evaluation of the algorithm with data obtained in a real railway station demonstrate that the proposed algorithm outperforms PCA and ICA. Also, results of calculation time demonstrate that the algorithm can work in real time.

  • Target Scattering Coefficients Estimation in Cognitive Radar under Temporally Correlated Target and Multiple Receive Antennas Scenario

    Peng CHEN  Lenan WU  

     
    PAPER-Sensing

      Vol:
    E98-B No:9
      Page(s):
    1914-1923

    In cognitive radar systems (CRSs), target scattering coefficients (TSC) can be utilized to improve the performance of target identification and classification. This work considers the problem of TSC estimation for temporally correlated target. Multiple receive antennas are adopted to receive the echo waveforms, which are interfered by the signal-dependent clutter. Unlike existing estimation methods in time domain, a novel estimation method based on Kalman filtering (KF) is proposed in frequency domain to exploit the temporal TSC correlation, and reduce the complexity of subsequent waveform optimization. Additionally, to minimize the mean square error of estimated TSC at each KF iteration, in contrary to existing works, we directly model the design process as an optimization problem, which is non-convex and cannot be solved efficiently. Therefore, we propose a novel method, similar in some way to semi-definite programming (SDP), to convert the non-convex problem into a convex one. Simulation results demonstrate that the estimation performance can be significantly improved by the KF estimation with optimized waveform.

  • Non-Orthogonal Multiple Access Using Intra-Beam Superposition Coding and Successive Interference Cancellation for Cellular MIMO Downlink

    Kenichi HIGUCHI  Yoshihisa KISHIYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:9
      Page(s):
    1888-1895

    We investigate non-orthogonal multiple access (NOMA) with a successive interference canceller (SIC) in the cellular multiple-input multiple-output (MIMO) downlink for systems beyond LTE-Advanced. Taking into account the overhead for the downlink reference signaling for channel estimation at the user terminal in the case of non-orthogonal multiuser multiplexing and the applicability of the SIC receiver in the MIMO downlink, we propose intra-beam superposition coding of a multiuser signal at the transmitter and the spatial filtering of inter-beam interference followed by the intra-beam SIC at the user terminal receiver. The intra-beam SIC cancels out the inter-user interference within a beam. Regarding the transmitter beamforming (precoding), in general, any kind of beamforming matrix determination criteria can be applied to the proposed NOMA method. In the paper, we assume open loop-type random beamforming, which is very efficient in terms of the amount of feedback information from the user terminal. Furthermore, we employ a weighted proportional fair (PF)-based resource (beam of each frequency block and power) allocation for the proposed method. Simulation results show that the proposed NOMA method using the intra-beam superposition coding and SIC simultaneously achieves better sum and cell-edge user throughput compared to orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems.

  • An Accurate Indoor-Localization Scheme with NLOS Detection and Elimination Exploiting Stochastic Characteristics

    Manato HORIBA  Eiji OKAMOTO  Toshiko SHINOHARA  Katsuhiko MATSUMURA  

     
    PAPER

      Vol:
    E98-B No:9
      Page(s):
    1758-1767

    In indoor localization using sensor networks, performance improvements are required for non-line-of-sight (NLOS) environments in which the estimation error is high. NLOS mitigation schemes involve the detection and elimination of the NLOS measurements. The iterative minimum residual (IMR) scheme, which is often applied to the localization scheme using the time of arrival (TOA), is commonly employed for this purpose. The IMR scheme is a low-complexity scheme and its NLOS detection performance is relatively high. However, when there are many NLOS nodes in a sensor field, the NLOS detection error of the IMR scheme increases and the estimation accuracy deteriorates. Therefore, we propose a new scheme that exploits coarse NLOS detection based on stochastic characteristics prior to the application of the IMR scheme to improve the localization accuracy. Improved performances were confirmed in two NLOS channel models by performing numerical simulations.

  • Radar HRRP Target Recognition Based on the Improved Kernel Distance Fuzzy C-Means Clustering Method

    Kun CHEN  Yuehua LI  Xingjian XU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/06/08
      Vol:
    E98-D No:9
      Page(s):
    1683-1690

    To overcome the target-aspect sensitivity in radar high resolution range profile (HRRP) recognition, a novel method called Improved Kernel Distance Fuzzy C-means Clustering Method (IKDFCM) is proposed in this paper, which introduces kernel function into fuzzy c-means clustering and relaxes the constraint in the membership matrix. The new method finds the underlying geometric structure information hiding in HRRP target and uses it to overcome the HRRP target-aspect sensitivity. The relaxing of constraint in the membership matrix improves anti-noise performance and robustness of the algorithm. Finally, experiments on three kinds of ground HRRP target under different SNRs and four UCI datasets demonstrate the proposed method not only has better recognition accuracy but also more robust than the other three comparison methods.

  • The Wear of Hot Switching Au/Cr-Au/MWCNT Contact Pairs for MEMS Contacts

    John W. McBRIDE  Hong LIU  Chamaporn CHIANRABUTRA  Adam P. LEWIS  

     
    PAPER

      Vol:
    E98-C No:9
      Page(s):
    912-918

    A gold coated carbon nanotubes composite was used as a contact material in Micro-Electrical-Mechanical-System (MEMS) switches. The switching contact was tested under typical conditions of MEMS relay applications: load voltage of 4 V, contact force of 1 mN, and load current varied between 20-200 mA. This paper focuses on the wear process over switching lifetime, and the dependence of the wear area on the current is discussed. It was shown that the contact was going to fail when the wear area approached the whole contact area, at which point the contact resistance increased sharply to three times the nominal resistance.

  • Comparisons on Arc Behavior and Contact Performance between Cu and Cu-Mo Alloys in a Bridge-Type Contact System

    Xue ZHOU  Mo CHEN  Guofu ZHAI  

     
    PAPER

      Vol:
    E98-C No:9
      Page(s):
    904-911

    Cu-Mo alloy carries forward not only high electrical conductivity and high thermal conductivity from Cu but also high hardness from Mo, which makes it a promising potential application in electrical contact fields. In this paper, arc characteristic and erosion characteristic of Cu-Mo contacts are studied with a bridge-type contact high speed break mechanism on DC270 V/200 A load condition. And in each experiment group, 2500 times break operations are carried out. During every break operation, a high-speed AD card is used to record voltage and current signal of the arc, a high-speed camera is applied to record arcing process, and the temperature of contacts and arc are acquired by thermocouple and spectrometer, respectively. The mass and contact resistance of contacts are measured before and after every group experiment. Besides, the photograph of contact surface is taken by SEM to help analyze the erosion characteristic. The comparison between Cu-Mo contacts and Cu contacts indicates that although Cu contacts have a better electrical conductivity and thermal conductivity, Cu-Mo contacts can decrease the temperature of arc to prevent thermal breakdown, and they are also harder to be ablated and have a longer life span.

  • Security Enhancement of Medical Imaging via Imperceptible and Robust Watermarking

    Manuel CEDILLO HERNANDEZ  Antonio CEDILLO HERNANDEZ  Francisco GARCIA UGALDE  Mariko NAKANO MIYATAKE  Hector PEREZ MEANA  

     
    LETTER-Information Network

      Pubricized:
    2015/05/28
      Vol:
    E98-D No:9
      Page(s):
    1702-1705

    In this letter we present an imperceptible and robust watermarking algorithm that uses a cryptographic hash function in the authentication application of digital medical imaging. In the proposed scheme we combine discrete Fourier transform (DFT) and local image masking to detect the watermark after a geometrical distortion and improve its imperceptibility. The image quality is measured by metrics currently used in digital image processing, such as VSNR, SSIM and PSNR.

  • Generation of a Zoomed Stereo Video Using Two Synchronized Videos with Different Magnifications

    Yusuke HAYASHI  Norihiko KAWAI  Tomokazu SATO  Miyuki OKUMOTO  Naokazu YOKOYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/06/17
      Vol:
    E98-D No:9
      Page(s):
    1691-1701

    This paper proposes a novel approach to generate stereo video in which the zoom magnification is not constant. Although this has been achieved mechanically in a conventional way, it is necessary for this approach to develop a mechanically complex system for each stereo camera system. Instead of a mechanical solution, we employ an approach from the software side: by using a pair of zoomed and non-zoomed video, a part of the non-zoomed video image is cut out and super-resolved for generating stereo video without a special hardware. To achieve this, (1) the zoom magnification parameter is automatically determined by using distributions of intensities, and (2) the cutout image is super-resolved by using optically zoomed images as exemplars. The effectiveness of the proposed method is quantitatively and qualitatively validated through experiments.

4481-4500hit(21534hit)