The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

5421-5440hit(21534hit)

  • Asymptotic Marginal Likelihood on Linear Dynamical Systems

    Takuto NAITO  Keisuke YAMAZAKI  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:4
      Page(s):
    884-892

    Linear dynamical systems are basic state space models literally dealing with underlying system dynamics on the basis of linear state space equations. When the model is employed for time-series data analysis, the system identification, which detects the dimension of hidden state variables, is one of the most important tasks. Recently, it has been found that the model has singularities in the parameter space, which implies that analysis for adverse effects of the singularities is necessary for precise identification. However, the singularities in the models have not been thoroughly studied. There is a previous work, which dealt with the simplest case; the hidden state and the observation variables are both one dimensional. The present paper extends the setting to general dimensions and more rigorously reveals the structure of singularities. The results provide the asymptotic forms of the generalization error and the marginal likelihood, which are often used as criteria for the system identification.

  • Negative Surveys with Randomized Response Techniques for Privacy-Aware Participatory Sensing

    Shunsuke AOKI  Kaoru SEZAKI  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    721-729

    Participatory sensing is an emerging system that allows the increasing number of smartphone users to share effectively the minute statistical information collected by themselves. This system relies on participants' active contribution including intentional input data. However, a number of privacy concerns will hinder the spread of participatory sensing applications. It is difficult for resource-constrained mobile phones to rely on complicated encryption schemes. We should prepare a privacy-preserving participatory sensing scheme with low computation complexity. Moreover, an environment that can reassure participants and encourage their participation in participatory sensing is strongly required because the quality of the statistical data is dependent on the active contribution of general users. In this article, we present MNS-RRT algorithms, which is the combination of negative surveys and randomized response techniques, for preserving privacy in participatory sensing, with high levels of data integrity. By using our method, participatory sensing applications can deal with a data having two selections in a dimension. We evaluated how this scheme can preserve the privacy while ensuring data integrity.

  • An Improved Video Identification Scheme Based on Video Tomography

    Qing-Ge JI  Zhi-Feng TAN  Zhe-Ming LU  Yong ZHANG  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:4
      Page(s):
    919-927

    In recent years, with the popularization of video collection devices and the development of the Internet, it is easy to copy original digital videos and distribute illegal copies quickly through the Internet. It becomes a critical task to uphold copyright laws, and this problem will require a technical solution. Therefore, as a challenging problem, copy detection or video identification becomes increasingly important. The problem addressed here is to identify a given video clip in a given set of video sequences. In this paper, an extension to the video identification approach based on video tomography is presented. First, the feature extraction process is modified to enhance the reliability of the shot signature with its size unchanged. Then, a new similarity measurement between two shot signatures is proposed to address the problem generated by the original approach when facing the query shot with a short length. In addition, the query scope is extended from one shot only to one clip (several consecutive shots) by giving a new definition of similarity between two clips and describing a search algorithm which can save much of the computation cost. Experimental results show that the proposed approach is more suitable for identifying shots with short lengths than the original approach. The clip query approach performs well in the experiment and it also shows strong robustness to data loss.

  • Data Filter Cache with Partial Tag Matching for Low Power Embedded Processor

    Ju Hee CHOI  Jong Wook KWAK  Seong Tae JHANG  Chu Shik JHON  

     
    LETTER-Computer System

      Vol:
    E97-D No:4
      Page(s):
    972-975

    Filter caches have been studied as an energy efficient solution. They achieve energy savings via selected access to L1 cache, but severely decrease system performance. Therefore, a filter cache system should adopt components that balance execution delay against energy savings. In this letter, we analyze the legacy filter cache system and propose Data Filter Cache with Partial Tag Cache (DFPC) as a new solution. The proposed DFPC scheme reduces energy consumption of L1 data cache and does not impair system performance at all. Simulation results show that DFPC provides the 46.36% energy savings without any performance loss.

  • Unambiguous Tracking Method Based on a New Combination Function for BOC Signals

    Lan YANG  Zulin WANG  Qin HUANG  Lei ZHAO  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E97-B No:4
      Page(s):
    923-929

    The auto-correlation function (ACF) of Binary Offset Carrier (BOC) modulated signals has multiple peaks which raise the problem of ambiguity in acquisition and tracking. In this paper, the ACF is split into several sub-correlation functions (SCFs) through dividing the integration period of ACF into several partials. Then a pseudo correlation function (PCF) is constructed from the SCFs through a combination function to eliminate all side-peaks. The unambiguous tracking method based on the PCF achieves better code phase tracking accuracy than the conventional methods in AWGN environment. It only requires half computation cost of Bump-Jumping (BJ) and nearly quarter of Double-Estimator, although offers slightly less accurate tracking than BJ and Double-Estimator in multi-path environment. Moreover, this method suits all kinds of BOC signals without any auxiliary correlators.

  • Online Inference of Mixed Membership Stochastic Blockmodels for Network Data Streams Open Access

    Tomoki KOBAYASHI  Koji EGUCHI  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    752-761

    Many kinds of data can be represented as a network or graph. It is crucial to infer the latent structure underlying such a network and to predict unobserved links in the network. Mixed Membership Stochastic Blockmodel (MMSB) is a promising model for network data. Latent variables and unknown parameters in MMSB have been estimated through Bayesian inference with the entire network; however, it is important to estimate them online for evolving networks. In this paper, we first develop online inference methods for MMSB through sequential Monte Carlo methods, also known as particle filters. We then extend them for time-evolving networks, taking into account the temporal dependency of the network structure. We demonstrate through experiments that the time-dependent particle filter outperformed several baselines in terms of prediction performance in an online condition.

  • Analyzing Information Flow and Context for Facebook Fan Pages Open Access

    Kwanho KIM  Josué OBREGON  Jae-Yoon JUNG  

     
    LETTER

      Vol:
    E97-D No:4
      Page(s):
    811-814

    As the recent growth of online social network services such as Facebook and Twitter, people are able to easily share information with each other by writing posts or commenting for another's posts. In this paper, we firstly suggest a method of discovering information flows of posts on Facebook and their underlying contexts by incorporating process mining and text mining techniques. Based on comments collected from Facebook, the experiment results illustrate how the proposed method can be applied to analyze information flows and contexts of posts on social network services.

  • New Metrics for Prioritized Interaction Test Suites

    Rubing HUANG  Dave TOWEY  Jinfu CHEN  Yansheng LU  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:4
      Page(s):
    830-841

    Combinatorial interaction testing has been well studied in recent years, and has been widely applied in practice. It generally aims at generating an effective test suite (an interaction test suite) in order to identify faults that are caused by parameter interactions. Due to some constraints in practical applications (e.g. limited testing resources), for example in combinatorial interaction regression testing, prioritized interaction test suites (called interaction test sequences) are often employed. Consequently, many strategies have been proposed to guide the interaction test suite prioritization. It is, therefore, important to be able to evaluate the different interaction test sequences that have been created by different strategies. A well-known metric is the Average Percentage of Combinatorial Coverage (shortly APCCλ), which assesses the rate of interaction coverage of a strength λ (level of interaction among parameters) covered by a given interaction test sequence S. However, APCCλ has two drawbacks: firstly, it has two requirements (that all test cases in S be executed, and that all possible λ-wise parameter value combinations be covered by S); and secondly, it can only use a single strength λ (rather than multiple strengths) to evaluate the interaction test sequence - which means that it is not a comprehensive evaluation. To overcome the first drawback, we propose an enhanced metric Normalized APCCλ (NAPCC) to replace the APCCλ Additionally, to overcome the second drawback, we propose three new metrics: the Average Percentage of Strengths Satisfied (APSS); the Average Percentage of Weighted Multiple Interaction Coverage (APWMIC); and the Normalized APWMIC (NAPWMIC). These metrics comprehensively assess a given interaction test sequence by considering different interaction coverage at different strengths. Empirical studies show that the proposed metrics can be used to distinguish different interaction test sequences, and hence can be used to compare different test prioritization strategies.

  • A 7-bit 1-GS/s Flash ADC with Background Calibration

    Sanroku TSUKAMOTO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    298-307

    A 7bit 1GS/s flash ADC using two bit active interpolation and background offset calibration is proposed and tested. It achieves background calibration using 36 pre-amplifiers with 139 comparators. To cancel the offset, two pre-amplifiers and 12 comparators are set to offline in turn while the others are operating. A two bit active interpolation design and an offset cancellation scheme are implemented in the latch stage. The interpolation and background calibration significantly reduce analog input signal as well as reference voltage load. Fabricated with the 90nm CMOS process, the proposed ADC consumes 95mW under a 1.2V power supply.

  • Interleaved k-NN Classification and Bias Field Estimation for MR Image with Intensity Inhomogeneity

    Jingjing GAO  Mei XIE  Ling MAO  

     
    LETTER-Biological Engineering

      Vol:
    E97-D No:4
      Page(s):
    1011-1015

    k-NN classification has been applied to classify normal tissues in MR images. However, the intensity inhomogeneity of MR images forces conventional k-NN classification into significant misclassification errors. This letter proposes a new interleaved method, which combines k-NN classification and bias field estimation in an energy minimization framework, to simultaneously overcome the limitation of misclassifications in conventional k-NN classification and correct the bias field of observed images. Experiments demonstrate the effectiveness and advantages of the proposed algorithm.

  • Effect of Multivariate Cauchy Mutation in Evolutionary Programming

    Chang-Yong LEE  Yong-Jin PARK  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:4
      Page(s):
    821-829

    In this paper, we apply a mutation operation based on a multivariate Cauchy distribution to fast evolutionary programming and analyze its effect in terms of various function optimizations. The conventional fast evolutionary programming in-cooperates the univariate Cauchy mutation in order to overcome the slow convergence rate of the canonical Gaussian mutation. For a mutation of n variables, while the conventional method utilizes n independent random variables from a univariate Cauchy distribution, the proposed method adopts n mutually dependent random variables that satisfy a multivariate Cauchy distribution. The multivariate Cauchy distribution naturally has higher probabilities of generating random variables in inter-variable regions than the univariate Cauchy distribution due to the mutual dependence among variables. This implies that the multivariate Cauchy random variable enhances the search capability especially for a large number of correlated variables, and, as a result, is more appropriate for optimization schemes characterized by interdependence among variables. In this sense, the proposed mutation possesses the advantage of both the univariate Cauchy and Gaussian mutations. The proposed mutation is tested against various types of real-valued function optimizations. We empirically find that the proposed mutation outperformed the conventional Cauchy and Gaussian mutations in the optimization of functions having correlations among variables, whereas the conventional mutations showed better performance in functions of uncorrelated variables.

  • Automatic Rectification of Processor Design Bugs Using a Scalable and General Correction Model

    Amir Masoud GHAREHBAGHI  Masahiro FUJITA  

     
    PAPER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    852-863

    This paper presents a method for automatic rectification of design bugs in processors. Given a golden sequential instruction-set architecture model of a processor and its erroneous detailed cycle-accurate model at the micro-architecture level, we perform symbolic simulation and property checking combined with concrete simulation iteratively to detect the buggy location and its corresponding fix. We have used the truth-table model of the function that is required for correction, which is a very general model. Moreover, we do not represent the truth-table explicitly in the design. We use, instead, only the required minterms, which are obtained from the output of our backend formal engine. This way, we avoid adding any new variable for representing the truth-table. Therefore, our correction model is scalable to the number of inputs of the truth-table that could grow exponentially. We have shown the effectiveness of our method on a complex out-of-order superscalar processor supporting atomic execution of instructions. Our method reduces the model size for correction by 6.0x and total correction time by 12.6x, on average, compared to our previous work.

  • Rapid Acquisition Assisted by Navigation Data for Inter-Satellite Links of Navigation Constellation

    Xian-Bin LI  Yue-Ke WANG  Jian-Yun CHEN  Shi-ce NI  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E97-B No:4
      Page(s):
    915-922

    Introducing inter-satellite ranging and communication links in a Global Navigation Satellite System (GNSS) can improve its performance. In view of the highly dynamic characteristics and the rapid but reliable acquisition requirement of inter-satellite link (ISL) signal of navigation constellation, we utilize navigation data, which is the special resource of navigation satellites, to assist signal acquisition. In this paper, we introduce a method that uses the navigation data for signal acquisition from three aspects: search space, search algorithm, and detector structure. First, an iteration method to calculate the search space is presented. Then the most efficient algorithm is selected by comparing the computation complexity of different search algorithms. Finally, with the navigation data, we also propose a method to guarantee the detecting probability constant by adjusting the non-coherent times. An analysis shows that with the assistance of navigation data, we can reduce the computing cost of ISL signal acquisition significantly, as well effectively enhancing acquisition speed and stabling the detection probability.

  • A Unified Self-Optimization Mobility Load Balancing Algorithm for LTE System

    Ying YANG  Wenxiang DONG  Weiqiang LIU  Weidong WANG  

     
    PAPER-Network

      Vol:
    E97-B No:4
      Page(s):
    755-764

    Mobility load balancing (MLB) is a key technology for self-organization networks (SONs). In this paper, we explore the mobility load balancing problem and propose a unified cell specific offset adjusting algorithm (UCSOA) which more accurately adjusts the largely uneven load between neighboring cells and is easily implemented in practice with low computing complexity and signal overhead. Moreover, we evaluate the UCSOA algorithm in two different traffic conditions and prove that the UCSOA algorithm can get the lower call blocking rates and handover failure rates. Furthermore, the interdependency of the proposed UCSOA algorithm's performance and that of the inter-cell interference coordination (ICIC) algorithm is explored. A self-organization soft frequency reuse scheme is proposed. It demonstrates UCSOA algorithm and ICIC algorithm can obtain a positive effect for each other and improve the network performance in LTE system.

  • 1-GHz, 17.5-mW, 8-bit Subranging ADC Using Offset-Cancelling Charge-Steering Amplifier

    Kenichi OHHATA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    289-297

    A high-speed and low-power 8-bit subranging analog-to-digital converter (ADC) based on 65-nm CMOS technology was fabricated. Rather than using digital foreground calibration, an analog-centric approach was adopted to reduce power dissipation. An offset cancelling charge-steering amplifier and capacitive-averaging technique effectively reduce the offset, noise, and power dissipation of the ADC. Moreover, the circuit used to compensate the kickback noise current from the comparator can also reduce the power dissipation. The reference-voltage generator for the fine ADC is composed of a fine ladder and a capacitor providing an AC signal path. This configuration reduces the power dissipation of the selection signal drivers for the analog multiplexer. A test chip fabricated using 65-nm digital CMOS technology achieved a high sampling rate of 1GHz, a low power dissipation of 17.5mW, and a figure of merit of 118fJ/conv.-step.

  • VAWS: Constructing Trusted Open Computing System of MapReduce with Verified Participants Open Access

    Yan DING  Huaimin WANG  Lifeng WEI  Songzheng CHEN  Hongyi FU  Xinhai XU  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    721-732

    MapReduce is commonly used as a parallel massive data processing model. When deploying it as a service over the open systems, the computational integrity of the participants is becoming an important issue due to the untrustworthy workers. Current duplication-based solutions can effectively solve non-collusive attacks, yet most of them require a centralized worker to re-compute additional sampled tasks to defend collusive attacks, which makes the worker a bottleneck. In this paper, we try to explore a trusted worker scheduling framework, named VAWS, to detect collusive attackers and assure the integrity of data processing without extra re-computation. Based on the historical results of verification, we construct an Integrity Attestation Graph (IAG) in VAWS to identify malicious mappers and remove them from the framework. To further improve the efficiency of identification, a verification-couple selection method with the IAG guidance is introduced to detect the potential accomplices of the confirmed malicious worker. We have proven the effectiveness of our proposed method on the improvement of system performance in theoretical analysis. Intensive experiments show the accuracy of VAWS is over 97% and the overhead of computation is closed to the ideal value of 2 with the increasing of the number of map tasks in our scheme.

  • A High-Frame-Rate Vision System with Automatic Exposure Control

    Qingyi GU  Abdullah AL NOMAN  Tadayoshi AOYAMA  Takeshi TAKAKI  Idaku ISHII  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:4
      Page(s):
    936-950

    In this paper, we present a high frame rate (HFR) vision system that can automatically control its exposure time by executing brightness histogram-based image processing in real time at a high frame rate. Our aim is to obtain high-quality HFR images for robust image processing of high-speed phenomena even under dynamically changing illumination, such as lamps flickering at 100 Hz, corresponding to an AC power supply at 50 / 60 Hz. Our vision system can simultaneously calculate a 256-bin brightness histogram for an 8-bit gray image of 512×512 pixels at 2000 fps by implementing a brightness histogram calculation circuit module as parallel hardware logic on an FPGA-based high-speed vision platform. Based on the HFR brightness histogram calculation, our method realizes automatic exposure (AE) control of 512×512 images at 2000 fps using our proposed AE algorithm. The proposed AE algorithm can maximize the number of pixels in the effective range of the brightness histogram, thus excluding much darker and brighter pixels, to improve the dynamic range of the captured image without over- and under-exposure. The effectiveness of our HFR system with AE control is evaluated according to experimental results for several scenes with illumination flickering at 100 Hz, which is too fast for the human eye to see.

  • Message Passing Decoder with Decoding on Zigzag Cycles for Non-binary LDPC Codes

    Takayuki NOZAKI  Kenta KASAI  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E97-A No:4
      Page(s):
    975-984

    In this paper, we propose a message passing decoding algorithm which lowers decoding error rates in the error floor regions for non-binary low-density parity-check (LDPC) codes transmitted over the binary erasure channel (BEC) and the memoryless binary-input output-symmetric (MBIOS) channels. In the case for the BEC, this decoding algorithm is a combination with belief propagation (BP) decoding and maximum a posteriori (MAP) decoding on zigzag cycles, which cause decoding errors in the error floor region. We show that MAP decoding on the zigzag cycles is realized by means of a message passing algorithm. Moreover, we extend this decoding algorithm to the MBIOS channels. Simulation results demonstrate that the decoding error rates in the error floor regions by the proposed decoding algorithm are lower than those by the BP decoder.

  • A Wideband 16×16-Element Corporate-Feed Hollow-Waveguide Slot Array Antenna in the 60-GHz Band

    Takashi TOMURA  Jiro HIROKAWA  Takuichi HIRANO  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:4
      Page(s):
    798-806

    A 16×16-element corporate-feed waveguide slot array antenna in the 60-GHz band is designed to achieve broadband reflection and high antenna efficiency. The sub-arrays consisting of 2×2-elements are designed to improve the reflection bandwidth by implementing lower Q and triple resonance. The designed antenna is fabricated by diffusion bonding of thin copper plates. A wide reflection bandwidth with VSWR less than 2.0 is obtained over 21.5%, 13.2GHz (54.7-67.8GHz). The measured gain is 32.6dBi and the corresponding antenna efficiency is 76.5%. The broad bandwidth of more than 31.5-dBi gain is realized over 19.2%, 11.9GHz (56.1-68.0GHz). The gain in bandwidth covers the whole of the license-free 60-GHz band (57-66GHz).

  • Spectrum Sharing in MIMO Cognitive Radio Systems with Imperfect Channel State Information

    Samuli TIIRO  Kenta UMEBAYASHI  Janne LEHTOMÄKI  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    867-874

    Cognitive radio (CR) systems aim for more efficient spectrum utilization by having so called secondary users (SUs) transmit on a frequency band reserved for licensed primary users (PUs). The secondary transmissions are allowed provided that no harmful interference will be caused to the PUs. SU terminals with multiple antennas can employ transmit power control with transmit precoding in order to control the interference levels. In most of the existing works, perfect channel state information (CSI) is assumed to be available for the SUs. However, in practical systems where perfect CSI is not available, the SUs are not able to guarantee that the interference constraints are sufficiently satisfied. In this paper, we investigate the problem of spectrum sharing for multiantenna CR systems using estimated CSI. Due to the random nature of the estimation error, we set a probabilistic interference constraint and, in order to satisfy it, provide a density function for the interference power. In addition, we present a power control framework for the SU to meet the probabilistic interference constraint.

5421-5440hit(21534hit)