The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

5461-5480hit(21534hit)

  • A Study on Objective Quality Measure for Bandwidth-Extended Speech in Mobile Voice Communications

    Takashi SUDO  Hirokazu TANAKA  Ryuji KOHNO  

     
    PAPER-Speech and Hearing

      Vol:
    E97-A No:3
      Page(s):
    792-799

    In this paper, we study an objective quality measure that approximates the subjective mean opinion score (MOS) for bandwidth-extended wideband speech with respect to narrowband speech. Bandwidth-extended speech should be widely evaluated by a subjective quality assessment such as MOS. However, such subjective quality assessments are expensive and time-consuming. This paper proposes a new objective quality measure that combines the perceptual evaluation of speech quality (PESQ) and spectral-distortion. We evaluated the correlation between our proposed scheme and MOS using AMR and AMR-WB speech codecs. The coefficient of correlation between the proposed scheme and the MOS value was found to be 0.973. We concluded that the proposed scheme is a valid and effective objective quality measure.

  • Implementation of the Complete Predictor for DDR3 SDRAM

    Vladimir V. STANKOVIC  Nebojsa Z. MILENKOVIC  Oliver M. VOJINOVIC  

     
    LETTER-Computer System

      Vol:
    E97-D No:3
      Page(s):
    589-592

    In the arsenal of resources for improving computer memory system performance, predictors have gained an increasing role in the past few years. They can suppress the latencies when accessing cache or main memory. In our previous work we proposed predictors that not only close the opened DRAM row but also predict the next row to be opened, hence the name ‘Complete Predictor’. It requires less than 10kB of SRAM for a 2GB SDRAM system. In this paper we evaluate how much additional hardware is needed and whether the activations of the predictors will slow down the DRAM controller.

  • Wireless Self-Powered Urinary Incontinence Sensor for Disposable Diapers

    Ami TANAKA  Takakuni DOUSEKI  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    587-593

    A self-powered urinary-incontinence sensor with a flexible wire-type urine-activated battery has been developed as an application for wireless biosensor networks. It is disposable and can be embedded in a diaper. The battery consists of two long film-type line electrodes printed on a flexible plastic sheet that abuts the absorbent material of the diaper. It conforms to the shape of the diaper when the diaper is worn. The stress produced by the curvature of the diaper presses the electrodes firmly against the diaper material, providing greater contact with any urine present. Thus, the battery generates more power than when it is flat, as in an unworn diaper. To verify the effectiveness of the battery, we fabricated a battery and a prototype sensor, which consists of an intermittent-power-supply circuit and a wireless transmitter, and embedded the battery in a diaper. The anode of the battery also acts as a wide ground plane for the antenna of the wireless transmitter, which radiates a large amount of power. When 80cc of urine is poured onto the diaper, the battery outputs a voltage of around 1V, which allows the sensor to transmit an ID signal over a distance of 5m every 40 seconds or so.

  • Analog Decoding Method for Simplified Short-Range MIMO Transmission

    Ryochi KATAOKA  Kentaro NISHIMORI  Takefumi HIRAGURI  Naoki HONMA  Tomohiro SEKI  Ken HIRAGA  Hideo MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E97-B No:3
      Page(s):
    620-630

    A novel analog decoding method using only 90-degree phase shifters is proposed to simplify the decoding method for short-range multiple-input multiple-output (MIMO) transmission. In a short-range MIMO transmission, an optimal element spacing that maximizes the channel capacity exists for a given transmit distance between the transmitter and receiver. We focus on the fact that the weight matrix by zero forcing (ZF) at the optimal element spacing can be obtained by using dividers and 90-degree phase shifters because it can be expressed by a unitary matrix. The channel capacity by the proposed method is next derived for the evaluation of the exact limitation of the channel capacity. Moreover, it is shown that an optimal weight when using directional antennas can be expressed by using only dividers, 90-degree phase shifters, and attenuators, regardless of the beam width of the directional antenna. Finally, bit error rate and channel capacity evaluations by both simulation and measurement confirm the effectiveness of the proposed method.

  • Performance Improvement by Local Frequency Offset Spatial Diversity Reception with π/4-DQPSK in Implant Body Area Networks

    Daisuke ANZAI  Takashi KOYA  Jingjing SHI  Jianqing WANG  

     
    PAPER

      Vol:
    E97-B No:3
      Page(s):
    571-578

    Space diversity reception is well known as a technique that can improve the performance of wireless communication systems without any temporal and spectral resource expansion. Implant body area networks (BANs) require high-speed transmission and low energy consumption. Therefore, applying spatial diversity reception to implant BANs can be expected to fulfill these requirements. For this purpose, this paper presents a local frequency offset diversity system with π/4-differential quadrature phase shift keying (DQPSK) for implant BANs that offer improved communication performance with a simpler receiver structure, and evaluates the proposal's bit error rate (BER) performance by theoretical analysis. In the theoretical analysis, it is difficult to analytically derive the probability density function (pdf) on the combined signal-to-noise power ratio (SNR) at the local offset frequency diversity receiver output. Therefore, this paper adopts the moment generating function approximation method and demonstrates that the resulting theoretical analyses yield performances that basically match the results of computer simulations. We first confirm that the local frequency offset diversity reception can effectively improve the communication performance of implant BANs. Next, we perform an analysis of a realistic communication performance, namely, a link budget analysis based on derived BER performance and evaluate the link parameters including system margin, maximum link distance and required transmit power. These analyses demonstrate that the local frequency offset diversity system can realize a reliable communication link in a realistic implant BAN scenario.

  • SOI CMOS Voltage Multiplier Circuits with Body Bias Control Technique for Battery-Less Wireless Sensor System

    Yasushi IGARASHI  Tadashi CHIBA  Shin-ichi O'UCHI  Meishoku MASAHARA  Kunihiro SAKAMOTO  

     
    PAPER

      Vol:
    E97-A No:3
      Page(s):
    741-748

    Voltage multiplier (VM) circuits for RF (2.45GHz)-to-DC conversion are developed for battery-less sensor nodes. Converted DC power is charged on a storage capacitor before driving a wireless sensor module. A charging time of the storage capacitor of the proposed VM circuits is reduced 1/10 of the conventional VM circuits, because they have constant current characteristics owing to self-control of body bias in diode-connected SOI MOSFETs. The wireless sensor system composed of the fabricated VM chip and a commercially available sensor module is operated using an RF signal of a wireless LAN modem (2.45GHz) as a power source.

  • Efficient Sampling Method for Monte Carlo Tree Search Problem

    Kazuki TERAOKA  Kohei HATANO  Eiji TAKIMOTO  

     
    PAPER-Computational Learning Theory, Game

      Vol:
    E97-D No:3
      Page(s):
    392-398

    We consider Monte Carlo tree search problem, a variant of Min-Max tree search problem where the score of each leaf is the expectation of some Bernoulli variables and not explicitly given but can be estimated through (random) playouts. The goal of this problem is, given a game tree and an oracle that returns an outcome of a playout, to find a child node of the root which attains an approximate min-max score. This problem arises in two player games such as computer Go. We propose a simple and efficient algorithm for Monte Carlo tree search problem.

  • Interval Walking Training for Middle-Aged and Older People: Methods and Evidence Open Access

    Hiroshi NOSE  

     
    INVITED PAPER

      Vol:
    E97-B No:3
      Page(s):
    534-539

    Faced with social problems such as rapidly aging society, the solutions have been expected in sports medicine. Humans became widely distributed on the earth from their birth by acquiring abilities to walk in an upright position and to adapt themselves to various natural environments. However, seeking a ‘comfortable environment’ in modern civilization has deteriorated these genetic characteristics of humans, and the consumption of resources and energy to acquire such a ‘comfortable environment’ has induced global warming-associated natural disasters and the destruction of social order. To halt this vicious cycle, we may reactivate the genetic characteristics in humans by doing exercise. To do this, we have developed a health promotion program for middle aged and older people, Jukunen Taiikudaigaku Program, in cooperation with the Japanese government, developed high-intensity interval walking training (IWT), and examined the physical and mental effects on 5,400 people for these 10 years. We found that IWT for 4 months increased physical fitness by 10-20%, decreased the indices of life-style related diseases by 10-20%. Since a prescription of IWT can be conducted by using an IT network system called e-Health Promotion System, the participants in the program were able to receive the prescription even if they lived remote from trainers, enabling them to perform IWT at their favored places and times, and also at low cost. Moreover, we found some single nucleotide polymorphisms closely related to inter-individual differences in the responses to IWT. Further, the system enables us to assess the inactivation/activation of genes for inflammatory responses which has been suggested to be involved in life-style related diseases. Also, the system enables us to search foods to promote health when they are consumed during exercise training. Thus, the system would have strong potential to promote health of middle-aged and older people in advanced aging society.

  • Demonstration of 6-bit, 0.20-mVpp Quasi-Triangle Voltage Waveform Generator Based on Pulse-Frequency Modulation

    Yoshitaka TAKAHASHI  Hiroshi SHIMADA  Masaaki MAEZAWA  Yoshinao MIZUGAKI  

     
    BRIEF PAPER

      Vol:
    E97-C No:3
      Page(s):
    194-197

    We present our design and operation of a 6-bit quasi-triangle voltage waveform generator comprising three circuit blocks; an improved variable Pulse Number Multiplier (variable-PNM), a Code Generator (CG), and a Double-Flux-Quantum Amplifier (DFQA). They are integrated into a single chip using a niobium Josephson junction technology. While the multiplication factor of our previous m-bit variable-PNM was limited between 2m-1 and 2m, that of the improved one is extended between 1 and 2m. Correct operations of the 6-bit variable-PNM are confirmed in low-speed testing with respect to the codes from the CG, whereas generation of a 6-bit, 0.20mVpp quasi-triangle voltage waveform is demonstrated with the 10-fold DFQA in high-speed testing.

  • UStore: STT-MRAM Based Light-Weight User-Level Storage for Enhancing Performance of Accessing Persistent Data

    Yong SONG  Kyuho PARK  

     
    PAPER-Data Engineering, Web Information Systems

      Vol:
    E97-D No:3
      Page(s):
    497-509

    Traditionally, in computer systems, file I/O has been a big performance bottleneck for I/O intensive applications. The recent advent of non-volatile byte-addressable memory (NVM) technologies such as STT-MRAM and PCM, provides a chance to store persistent data with a high performance close to DRAM's. However, as the location of the persistent storage device gets closer to the CPU, the system software layers overheads for accessing the data such as file system layer including virtual file system layer and device driver are no longer negligible. In this paper, we propose a light-weight user-level persistent storage, called UStore, which is physically allocated on the NVM and is mapped directly into the virtual address space of an application. UStore makes it possible for the application to fast access the persistent data without the system software overheads and extra data copy between the user space and kernel space. We show how UStore is easily applied to existing applications with little elaboration and evaluate its performance enhancement through several benchmark tests.

  • Orientation-Compensative Signal Registration for Owner Authentication Using an Accelerometer

    Trung Thanh NGO  Yasushi MAKIHARA  Hajime NAGAHARA  Yasuhiro MUKAIGAWA  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:3
      Page(s):
    541-553

    Gait-based owner authentication using accelerometers has recently been extensively studied owing to the development of wearable electronic devices. An actual gait signal is always subject to change due to many factors including variation of sensor attachment. In this research, we tackle to the practical sensor-orientation inconsistency, for which signal sequences are captured at different sensor orientations. We present an iterative signal matching algorithm based on phase-registration technique to simultaneously estimate relative sensor-orientation and register the 3D acceleration signals. The iterative framework is initialized by using 1D orientation-invariant resultant signals which are computed from 3D signals. As a result, the matching algorithm is robust to any initial sensor-orientation. This matching algorithm is used to match a probe and a gallery signals in the proposed owner authentication method. Experiments using actual gait signals under various conditions such as different days, sensors, weights being carried, and sensor orientations show that our authentication method achieves positive results.

  • Detecting Hardware Trojan through Time Domain Constrained Estimator Based Unified Subspace Technique

    Mingfu XUE  Wei LIU  Aiqun HU  Youdong WANG  

     
    LETTER-Dependable Computing

      Vol:
    E97-D No:3
      Page(s):
    606-609

    Hardware Trojan (HT) has emerged as an impending security threat to hardware systems. However, conventional functional tests fail to detect HT since Trojans are triggered by rare events. Most of the existing side-channel based HT detection techniques just simply compare and analyze circuit's parameters and offer no signal calibration or error correction properties, so they suffer from the challenge and interference of large process variations (PV) and noises in modern nanotechnology which can completely mask Trojan's contribution to the circuit. This paper presents a novel HT detection method based on subspace technique which can detect tiny HT characteristics under large PV and noises. First, we formulate the HT detection problem as a weak signal detection problem, and then we model it as a feature extraction model. After that, we propose a novel subspace HT detection technique based on time domain constrained estimator. It is proved that we can distinguish the weak HT from variations and noises through particular subspace projections and reconstructed clean signal analysis. The reconstructed clean signal of the proposed algorithm can also be used for accurate parameter estimation of circuits, e.g. power estimation. The proposed technique is a general method for related HT detection schemes to eliminate noises and PV. Both simulations on benchmarks and hardware implementation validations on FPGA boards show the effectiveness and high sensitivity of the new HT detection technique.

  • Digital Background Calibration for a 14-bit 100-MS/s Pipelined ADC Using Signal-Dependent Dithering

    Zhao-xin XIONG  Min CAI  Xiao-Yong HE  Yun YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:3
      Page(s):
    207-214

    A digital background calibration technique using signal-dependent dithering is proposed, to correct the nonlinear errors which results from capacitor mismatches and finite opamp gain in pipelined analog-to-digital converter (ADC). Large magnitude dithers are used to measure and correct both errors simultaneously in background. In the proposed calibration system, the 2.5-bit capacitor-flip-over multiplying digital-to-analog converter (MDAC) stage is modified for the injection of large magnitude dithering by adding six additional comparators, and thus only three correction parameters in every stage subjected to correction were measured and extracted by a simple calibration algorithm with multibit first stage. Behavioral simulation results show that, using the proposed calibration technique, the signal-to-noise-and-distortion ratio improves from 63.3 to 79.3dB and the spurious-free dynamic range is increased from 63.9 to 96.4dB after calibrating the first two stages, in a 14-bit 100-MS/s pipelined ADC with σ=0.2% capacitor mismatches and 60dB nonideal opamp gain. The time of calibrating the first two stages is around 1.34 seconds for the modeled ADC.

  • Convex Grid Drawings of Plane Graphs with Pentagonal Contours

    Kazuyuki MIURA  

     
    PAPER-Graph Algorithms

      Vol:
    E97-D No:3
      Page(s):
    413-420

    In a convex drawing of a plane graph, all edges are drawn as straight-line segments without any edge-intersection and all facial cycles are drawn as convex polygons. In a convex grid drawing, all vertices are put on grid points. A plane graph G has a convex drawing if and only if G is internally triconnected, and an internally triconnected plane graph G has a convex grid drawing on an (n-1)×(n-1) grid if either G is triconnected or the triconnected component decomposition tree T(G) of G has two or three leaves, where n is the number of vertices in G. An internally triconnected plane graph G has a convex grid drawing on a 2n×2n grid if T(G) has exactly four leaves. In this paper, we show that an internally triconnected plane graph G has a convex grid drawing on a 6n×n2 grid if T(G) has exactly five leaves. We also present an algorithm to find such a drawing in linear time. This is the first algorithm that finds a convex grid drawing of such a plane graph G in a grid of polynomial size.

  • Efficient Update Activation for Virtual Machines in IaaS Cloud Computing Environments

    Hiroshi YAMADA  Shuntaro TONOSAKI  Kenji KONO  

     
    PAPER-Software System

      Vol:
    E97-D No:3
      Page(s):
    469-479

    Infrastructure as a Service (IaaS), a form of cloud computing, is gaining attention for its ability to enable efficient server administration in dynamic workload environments. In such environments, however, updating the software stack or content files of virtual machines (VMs) is a time-consuming task, discouraging administrators from frequently enhancing their services and fixing security holes. This is because the administrator has to upload the whole new disk image to the cloud platform via the Internet, which is not yet fast enough that large amounts of data can be transferred smoothly. Although the administrator can apply incremental updates directly to the running VMs, he or she has to carefully consider the type of update and perform operations on all running VMs, such as application restarts. This is a tedious and error-prone task. This paper presents a technique for synchronizing VMs with less time and lower administrative burden. We introduce the Virtual Disk Image Repository, which runs on the cloud platform and automatically updates the virtual disk image and the running VMs with only the incremental update information. We also show a mechanism that performs necessary operations on the running VM such as restarting server processes, based on the types of files that are updated. We implement a prototype on Linux 2.6.31.14 and Amazon Elastic Compute Cloud. An experiment shows that our technique can synchronize VMs in an order-of-magnitude shorter time than the conventional disk-image-based VM method. Also, we discuss limitations of our technique and some directions for more efficient VM updates.

  • Design and Demonstration of a Single-Flux-Quantum Multi-Stop Time-to-Digital Converter for Time-of-Flight Mass Spectrometry

    Kyosuke SANO  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E97-C No:3
      Page(s):
    182-187

    We have been developing a superconducting time-of-flight mass spectrometry (TOF-MS) system, which utilizes a superconductive strip ion detector (SSID) and a single-flux-quantum (SFQ) multi-stop time-to-digital converter (TDC). The SFQ multi-stop TDC can measure the time intervals between multiple input signals and directly convert them into binary data. In this study, we designed and implemented 24-bit SFQ multi-stop TDCs with a 3×24-bit FIFO buffer using the AIST Nb standard process (STP2), whose time resolution and dynamic range are 100ps and 1.6ms, respectively. The timing jitter of the TDC was investigated by comparing two types of TDCs: one uses an on-chip SFQ clock generator (CG) and the other uses a microwave oscillator at room temperature. We confirmed the correct operation of both TDCs and evaluated their timing jitter. The experimentally-obtained timing jitter is about 40ns and 700ps for the TDCs with and without the on-chip SFQ CG, respectively, for the measured time interval of 50µs, which linearly increases with increase of the measured time interval.

  • An Average-Case Efficient Algorithm on Testing the Identity of Boolean Functions in Trace Representation

    Qian GUO  Haibin KAN  

     
    LETTER-Fundamentals of Information Systems

      Vol:
    E97-D No:3
      Page(s):
    583-588

    In this paper, we present an average-case efficient algorithm to resolve the problem of determining whether two Boolean functions in trace representation are identical. Firstly, we introduce a necessary and sufficient condition for null Boolean functions in trace representation, which can be viewed as a generalization of the well-known additive Hilbert-90 theorem. Based on this condition, we propose an algorithmic method with preprocessing to address the original problem. The worst-case complexity of the algorithm is still exponential; its average-case performance, however, can be improved. We prove that the expected complexity of the refined procedure is O(n), if the coefficients of input functions are chosen i.i.d. according to the uniform distribution over F2n; therefore, it performs well in practice.

  • A Note on 8-QAM+ Sequences

    Fanxin ZENG  Xiaoping ZENG  Zhenyu ZHANG  Guixin XUAN  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:3
      Page(s):
    888-893

    This letter presents three methods for producing 8-QAM+ sequences. The first method transforms a ternary complementary sequence set (CSS) with even number of sub-sequences into an 8-QAM+ periodic CSS with both of the period and the number of sub-sequences unaltered. The second method results in an 8-QAM+ aperiodic CSS with confining neither the period nor the number of sub-sequences. The third method produces 8-QAM+ periodic sequences having ideal autocorrelation property on the real part of the autocorrelation function. The proposed sequences can be potentially applied to suppression of multiple access interference or synchronization in a communication system.

  • Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation Open Access

    Shuichi NAGASAWA  Kenji HINODE  Tetsuro SATOH  Mutsuo HIDAKA  Hiroyuki AKAIKE  Akira FUJIMAKI  Nobuyuki YOSHIKAWA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    INVITED PAPER

      Vol:
    E97-C No:3
      Page(s):
    132-140

    We describe the recent progress on a Nb nine-layer fabrication process for large-scale single flux quantum (SFQ) circuits. A device fabricated in this process is composed of an active layer including Josephson junctions (JJ) at the top, passive transmission line (PTL) layers in the middle, and a DC power layer at the bottom. We describe the process conditions and the fabrication equipment. We use both diagnostic chips and shift register (SR) chips to improve the fabrication process. The diagnostic chip was designed to evaluate the characteristics of basic elements such as junctions, contacts, resisters, and wiring, in addition to their defect evaluations. The SR chip was designed to evaluate defects depending on the size of the SFQ circuits. The results of a long-term evaluation of the diagnostic and SR chips showed that there was fairly good correlation between the defects of the diagnostic chips and yields of the SRs. We could obtain a yield of 100% for SRs including 70,000JJs. These results show that considerable progress has been made in reducing the number of defects and improving reliability.

  • An Efficient Adaptive Filtering Scheme Based on Combining Multiple Metrics

    Osamu TODA  Masahiro YUKAWA  Shigenobu SASAKI  Hisakazu KIKUCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:3
      Page(s):
    800-808

    We propose a novel adaptive filtering scheme named metric-combining normalized least mean square (MC-NLMS). The proposed scheme is based on iterative metric projections with a metric designed by combining multiple metric-matrices convexly in an adaptive manner, thereby taking advantages of the metrics which rely on multiple pieces of information. We compare the improved PNLMS (IPNLMS) algorithm with the natural proportionate NLMS (NPNLMS) algorithm, which is a special case of MC-NLMS, and it is shown that the performance of NPNLMS is controllable with the combination coefficient as opposed to IPNLMS. We also present an application to an acoustic echo cancellation problem and show the efficacy of the proposed scheme.

5461-5480hit(21534hit)