The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

881-900hit(21534hit)

  • Distributed Scheme for Unit Commitment Problem Using Constraint Programming and ADMM Open Access

    Yuta INOUE  Toshiyuki MIYAMOTO  

     
    INVITED PAPER

      Pubricized:
    2021/09/02
      Vol:
    E105-A No:5
      Page(s):
    788-798

    The unit commitment problem (UCP) is the problem of deciding up/down and generation-level patterns of energy production units. Due to the expansion of distributed energy resources and the liberalization of energy trading in recent years, solving the distributed UCP (DUCP) is attracting the attention of researchers. Once an up/down pattern is determined, the generation-level pattern can be decided distributively using the alternating direction method of multipliers (ADMM). However, ADMM does not guarantee convergence when deciding both up/down and generation-level patterns. In this paper, we propose a method to solve the DUCP using ADMM and constraint optimization programming. Numerical experiments show the efficacy of the proposed method.

  • Reliable Decentralized Supervisory Control of Discrete Event Systems with Single-Level Inference

    Shigemasa TAKAI  Sho YOSHIDA  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:5
      Page(s):
    799-807

    We consider a reliable decentralized supervisory control problem for discrete event systems in the inference-based framework. This problem requires us to synthesize local supervisors such that the controlled system achieves the specification and is nonblocking, even if local control decisions of some local supervisors are not available for making the global control decision. In the case of single-level inference, we introduce a notion of reliable 1-inference-observability and show that reliable 1-inference-observability together with controllability and Lm(G)-closedness is a necessary and sufficient condition for the existence of a solution to the reliable decentralized supervisory control problem.

  • Optimal Control of Timed Petri Nets Under Temporal Logic Constraints with Generalized Mutual Exclusion

    Kohei FUJITA  Toshimitsu USHIO  

     
    PAPER

      Pubricized:
    2021/10/13
      Vol:
    E105-A No:5
      Page(s):
    808-815

    This paper presents a novel method for optimal control of timed Petri nets, introducing a novel temporal logic based constraint called a generalized mutual exclusion temporal constraint (GMETC). The GMETC is described by a metric temporal logic (MTL) formula where each atomic proposition represents a generalized mutual exclusion constraint (GMEC). We formulate an optimal control problem of the timed Petri nets under a given GMETC and solve the problem by transforming it into an integer linear programming problem where the MTL formula is encoded by linear inequalities. We show the effectiveness of the proposed approach by a numerical simulation.

  • Improved Metric Function for AlphaSeq Algorithm to Design Ideal Complementary Codes for Multi-Carrier CDMA Systems

    Shucong TIAN  Meng YANG  Jianpeng WANG  Rui WANG  Avik R. ADHIKARY  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    901-905

    AlphaSeq is a new paradigm to design sequencess with desired properties based on deep reinforcement learning (DRL). In this work, we propose a new metric function and a new reward function, to design an improved version of AlphaSeq. We show analytically and also through numerical simulations that the proposed algorithm can discover sequence sets with preferable properties faster than that of the previous algorithm.

  • BOTDA-Based Technique for Measuring Maximum Loss and Crosstalk at Splice Point in Few-Mode Fibers Open Access

    Tomokazu ODA  Atsushi NAKAMURA  Daisuke IIDA  Hiroyuki OSHIDA  

     
    PAPER-Optical Fiber for Communications

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:5
      Page(s):
    504-511

    We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.

  • A Routing Strategy with Optimizing Linear Programming in Hybrid SDN

    Chenhui WANG  Hong NI  Lei LIU  

     
    PAPER-Network

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    569-579

    Software-defined networking (SDN) decouples the control and forwarding of network devices, providing benefits such as simplified control. However, due to cost constraints and other factors, SDN is difficult to fully deploy. It has been proposed that SDN devices can be incrementally deployed in a traditional IP network, i.e., hybrid SDN, to provide partial SDN benefits. Studies have shown that better traffic engineering performance can be achieved by modifying the coverage and placement of SDN devices in hybrid SDN, because they can influence the behavior of legacy switches through certain strategies. However, it is difficult to develop and execute a traffic engineering strategy in hybrid SDN. This article proposes a routing algorithm to achieve approximate load balancing, which minimizes the maximum link utilization by using the optimal solution of linear programming and merging the minimum split traffic flows. A multipath forwarding mechanism under the same problem is designed to optimize transmission time. Experiments show that our algorithm has certain advantages in link utilization and transmission time compared to traditional distributed routing algorithms like OSPF and some hybrid SDN routing mechanisms. Furthermore, our algorithm can approximate the control effect of full SDN when the deployment rate of SDN devices is 40%.

  • SDM4IIoT: An SDN-Based Multicast Algorithm for Industrial Internet of Things

    Hequn LI  Jiaxi LU  Jinfa WANG  Hai ZHAO  Jiuqiang XU  Xingchi CHEN  

     
    PAPER-Network

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    545-556

    Real-time and scalable multicast services are of paramount importance to Industrial Internet of Things (IIoT) applications. To realize these services, the multicast algorithm should, on the one hand, ensure the maximum delay of a multicast session not exceeding its upper delay bound. On the other hand, the algorithm should minimize session costs. As an emerging networking paradigm, Software-defined Networking (SDN) can provide a global view of the network to multicast algorithms, thereby bringing new opportunities for realizing the desired multicast services in IIoT environments. Unfortunately, existing SDN-based multicast (SDM) algorithms cannot meet the real-time and scalable requirements simultaneously. Therefore, in this paper, we focus on SDM algorithm design for IIoT environments. To be specific, the paper first converts the multicast tree construction problem for SDM in IIoT environments into a delay-bounded least-cost shared tree problem and proves that it is an NP-complete problem. Then, the paper puts forward a shared tree (ST) algorithm called SDM4IIoT to compute suboptimal solutions to the problem. The algorithm consists of five steps: 1) construct a delay-optimal shared tree; 2) divide the tree into a set of subpaths and a subtree; 3) optimize the cost of each subpath by relaxing the delay constraint; 4) optimize the subtree cost in the same manner; 5) recombine them into a shared tree. Simulation results show that the algorithm can provide real-time support that other ST algorithms cannot. In addition, it can achieve good scalability. Its cost is only 20.56% higher than the cost-optimal ST algorithm. Furthermore, its computation time is also acceptable. The algorithm can help to realize real-time and scalable multicast services for IIoT applications.

  • Performance Evaluation of Classification and Verification with Quadrant IQ Transition Image

    Hiro TAMURA  Kiyoshi YANAGISAWA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    580-587

    This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.

  • Multicell Distributed Beamforming Based on the Altruistic and Egoistic Strategy with Local Channel State Information

    Zijia HUANG  Qinghai YANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    617-628

    In this paper, the sum cell rate based on altruistic and egoistic multicell distributed beamforming (MDBF) is studied with local channel state Information (CSI). To start with, we provide two sufficient conditions for implementing altruistic and egoistic strategy based on the traditional method, and give the proof of those condition. Second, a MDBF method based on the altruistic and egoistic strategy is proposed, where the altruistic strategy is implemented with the internal penalty function. Finally, simulation results demonstrate that the effectiveness of the sufficient conditions and the proposed method has the different performance and advantages.

  • Long-Time Coherent Integration for Non-Radial Moving Target Based on Radon Fourier Transform with Modified Variant Angle Open Access

    Denghui YAO  Xiaoyong ZHANG  Zhengbo SUN  Dexiu HU  

     
    PAPER-Sensing

      Pubricized:
    2021/11/09
      Vol:
    E105-B No:5
      Page(s):
    665-674

    Long-term coherent integration can significantly improve the ability to detect maneuvering targets by radar. Especially for weak targets, longer integration times are needed to improve. But for non-radially moving targets, the time-varying angle between target moving direction and radar line of sight will cause non-linear range migration (NLRM) and non-linear Doppler frequency migration (NLDFM) within long-time coherent processing, which precludes existing methods that ignore angle changes, and seriously degrades the performance of coherent integration. To solve this problem, an efficient method based on Radon Fourier transform (RFT) with modified variant angle model (ARFT) is proposed. In this method, a new parameter angle is introduced to optimize the target motion model, and the NLRM and NLDFM are eliminated by range-velocity-angle joint three-dimensional searching of ARFT. Compared with conventional algorithms, the proposed method can more accurately compensate for the NLRM and NLDFM, thus achieving better integration performance and detection probability for non-radial moving weak targets. Numerical simulations verify the effectiveness and advantages of the proposed method.

  • Dynamic Fault Tolerance for Multi-Node Query Processing

    Yutaro BESSHO  Yuto HAYAMIZU  Kazuo GODA  Masaru KITSUREGAWA  

     
    PAPER

      Pubricized:
    2022/02/03
      Vol:
    E105-D No:5
      Page(s):
    909-919

    Parallel processing is a typical approach to answer analytical queries on large database. As the size of the database increases, we often try to increase the parallelism by incorporating more processing nodes. However, this approach increases the possibility of node failure as well. According to the conventional practice, if a failure occurs during query processing, the database system restarts the query processing from the beginning. Such temporal cost may be unacceptable to the user. This paper proposes a fault-tolerant query processing mechanism, named PhoeniQ, for analytical parallel database systems. PhoeniQ continuously takes a checkpoint for every operator pipeline and replicates the output of each stateful operator among different processing nodes. If a single processing node fails during query processing, another can promptly take over the processing. Hence, PhoneniQ allows the database system to efficiently resume query processing after a partial failure event. This paper presents a key design of PhoeniQ and prototype-based experiments to demonstrate that PhoeniQ imposes negligible performance overhead and efficiently continues query processing in the face of node failure.

  • Research on Mongolian-Chinese Translation Model Based on Transformer with Soft Context Data Augmentation Technique

    Qing-dao-er-ji REN  Yuan LI  Shi BAO  Yong-chao LIU  Xiu-hong CHEN  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/11/19
      Vol:
    E105-A No:5
      Page(s):
    871-876

    As the mainstream approach in the field of machine translation, neural machine translation (NMT) has achieved great improvements on many rich-source languages, but performance of NMT for low-resource languages ae not very good yet. This paper uses data enhancement technology to construct Mongolian-Chinese pseudo parallel corpus, so as to improve the translation ability of Mongolian-Chinese translation model. Experiments show that the above methods can improve the translation ability of the translation model. Finally, a translation model trained with large-scale pseudo parallel corpus and integrated with soft context data enhancement technology is obtained, and its BLEU value is 39.3.

  • High Temporal Resolution-Based Temporal Iterative Tracking for High Framerate and Ultra-Low Delay Dynamic Tracking System

    Tingting HU  Ryuji FUCHIKAMI  Takeshi IKENAGA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/02/22
      Vol:
    E105-D No:5
      Page(s):
    1064-1074

    High frame rate and ultra-low delay vision system, which can finish reading and processing of 1000fps sequence within 1ms/frame, draws increasing attention in the field of robotics that requires immediate feedback from image process core. Meanwhile, tracking task plays an important role in many computer vision applications. Among various tracking algorithms, Lucas Kanade (LK)-based template tracking, which tracks targets with high accuracy over the sub-pixel level, is one of the keys for robotic applications, such as factory automation (FA). However, the substantial spatial iterative processing and complex computation in the LK algorithm, make it difficult to achieve a high frame rate and ultra-low delay tracking with limited resources. Aiming at an LK-based template tracking system that reads and processes 1000fps sequences within 1ms/frame with small resource costs, this paper proposes: 1) High temporal resolution-based temporal iterative tracking, which maps the spatial iterations into the temporal domain, efficiently reduces resource cost and delay caused by spatial iterative processing. 2) Label scanner-based multi-stream spatial processing, which maps the local spatial processing into the labeled input pixel stream and aggregates them with a label scanner, makes the local spatial processing in the LK algorithm possible be implemented with a small resource cost. Algorithm evaluation shows that the proposed temporal iterative tracking performs dynamic tracking, which tracks object with coarse accuracy when it's moving fast and achieves higher accuracy when it slows down. Hardware evaluation shows that the proposed label scanner-based multi-stream architecture makes the system implemented on FPGA (zcu102) with resource cost less than 20%, and the designed tracking system supports to read and process 1000fps sequence within 1ms/frame.

  • Maximum Doppler Frequency Detection Based on Likelihood Estimation With Theoretical Thresholds Open Access

    Satoshi DENNO  Kazuma HOTTA  Yafei HOU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    657-664

    This paper proposes a novel maximum Doppler frequency detection technique for user moving velocity estimation. The maximum Doppler frequency is estimated in the proposed detection technique by making use of the fact that user moving velocity is not distributed continuously. The fluctuation of the channel state information during a packet is applied for the proposed detection, in which likelihood estimation is performed by comparing the fluctuation with the thresholds. The thresholds are theoretically derived on the assumption that the fluctuation is distributed with an exponential function. An approximated detection technique is proposed to simplify the theoretical threshold derivation. The performance of the proposed detection is evaluated by computer simulation. The proposed detection accomplishes better detection performance as the fluctuation values are summed over more packets. The proposed detection achieves about 90% correct detection performance in a fading channel with the Eb/N0 = 35dB, when the fluctuation values are summed over only three packets. Furthermore, the approximated detection also achieves the same detection performance.

  • Fault-Tolerant Controller Placement Model by Distributing Switch Load among Multiple Controllers in Software-Defined Network

    Seiki KOTACHI  Takehiro SATO  Ryoichi SHINKUMA  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    533-544

    One of the features of a software-defined network (SDN) is a logically centralized control plane hosting one or more SDN controllers. As SDN controller placement can impact network performance, it is widely studied as the controller placement problem (CPP). For a cost-effective network design, network providers need to minimize the number of SDN controllers used in the network since each SDN controller incurs installation and maintenance costs. Moreover, the network providers need to deal with the failure of SDN controllers. Existing studies that consider SDN controller failures use the scheme of connecting each SDN switch to one Master controller and one or more Slave controllers. The problem with this scheme is that the computing capacity of each SDN controller cannot be used efficiently since one SDN controller handles the load of all SDN switches connected to it. The number of SDN controllers required can be reduced by distributing the load of each SDN switch among multiple SDN controllers. This paper proposes a controller placement model that allows the distribution against SDN controller failures. The proposed model determines the ratios of computing capacity demanded by each SDN switch on the SDN controllers connected to it. The proposed model also determines the number and placement of SDN controllers and the assignment of each SDN switch to SDN controllers. Controller placement is determined so that a network provider can continue to manage all SDN switches if no more than a certain number of SDN controller failures occur. We develop two load distribution methods: split and even-split. We formulate the proposed model with each method as integer linear programming problems. Numerical results show that the proposed model reduces the number of SDN controllers compared to a benchmark model; the maximum reduction ratio is 38.8% when the system latency requirement between an SDN switch and an SDN controller is 100[ms], the computing capacity of each SDN controller is 6 × 106[packets/s], and the maximum number of SDN controllers that can fail at the same time is one.

  • Speaker-Independent Audio-Visual Speech Separation Based on Transformer in Multi-Talker Environments

    Jing WANG  Yiyu LUO  Weiming YI  Xiang XIE  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/01/11
      Vol:
    E105-D No:4
      Page(s):
    766-777

    Speech separation is the task of extracting target speech while suppressing background interference components. In applications like video telephones, visual information about the target speaker is available, which can be leveraged for multi-speaker speech separation. Most previous multi-speaker separation methods are mainly based on convolutional or recurrent neural networks. Recently, Transformer-based Seq2Seq models have achieved state-of-the-art performance in various tasks, such as neural machine translation (NMT), automatic speech recognition (ASR), etc. Transformer has showed an advantage in modeling audio-visual temporal context by multi-head attention blocks through explicitly assigning attention weights. Besides, Transformer doesn't have any recurrent sub-networks, thus supporting parallelization of sequence computation. In this paper, we propose a novel speaker-independent audio-visual speech separation method based on Transformer, which can be flexibly applied to unknown number and identity of speakers. The model receives both audio-visual streams, including noisy spectrogram and speaker lip embeddings, and predicts a complex time-frequency mask for the corresponding target speaker. The model is made up by three main components: audio encoder, visual encoder and Transformer-based mask generator. Two different structures of encoders are investigated and compared, including ResNet-based and Transformer-based. The performance of the proposed method is evaluated in terms of source separation and speech quality metrics. The experimental results on the benchmark GRID dataset show the effectiveness of the method on speaker-independent separation task in multi-talker environments. The model generalizes well to unseen identities of speakers and noise types. Though only trained on 2-speaker mixtures, the model achieves reasonable performance when tested on 2-speaker and 3-speaker mixtures. Besides, the model still shows an advantage compared with previous audio-visual speech separation works.

  • Codebook Design for Vertical Beamforming by Multi-Cell Coordination

    Kenji HOSHINO  Teruya FUJII  

     
    PAPER-Digital Signal Processing, Mobile Information Network and Personal Communications

      Pubricized:
    2021/10/11
      Vol:
    E105-A No:4
      Page(s):
    622-630

    Fifth-generation (5G) mobile communication systems employ beamforming technology using massive multiple-input and multiple-output (MIMO) to improve the reception quality and spectrum efficiency within a cell. Meanwhile, coordinated beamforming among multiple base stations is an effective approach to improving the spectrum efficiency at the cell edges, in which massive MIMO is deployed at geographically distant base stations and beamforming control is conducted in a cooperative manner. Codebook-based beamforming is a method for realizing multi-cell coordinated beamforming, in which each base station selects one of multiple beams that are predefined in a codebook. In codebook-based beamforming, it is important to design an efficient codebook that takes into account the beam allocation and the number of beams. In general, the larger the number of beams defined in a codebook, the more finely tuned the beam control can be and a greater improvement in spectrum efficiency can be expected. However, it requires a huge signal processing to optimize the beam combinations with a large number of beams by coordinated beamforming. This paper proposes a novel codebook design that efficiently assigns beam directions and widths in a vertical plane. Computer simulations showed that the proposed codebook performs as well as the conventional method while requiring fewer beam combinations.

  • Master-Teacher-Student: A Weakly Labelled Semi-Supervised Framework for Audio Tagging and Sound Event Detection

    Yuzhuo LIU  Hangting CHEN  Qingwei ZHAO  Pengyuan ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/01/13
      Vol:
    E105-D No:4
      Page(s):
    828-831

    Weakly labelled semi-supervised audio tagging (AT) and sound event detection (SED) have become significant in real-world applications. A popular method is teacher-student learning, making student models learn from pseudo-labels generated by teacher models from unlabelled data. To generate high-quality pseudo-labels, we propose a master-teacher-student framework trained with a dual-lead policy. Our experiments illustrate that our model outperforms the state-of-the-art model on both tasks.

  • Interleaved Sequences with Anti-Doppler Properties

    Xi CAO  Yang YANG  Rong LUO  

     
    LETTER-Coding Theory

      Pubricized:
    2021/10/05
      Vol:
    E105-A No:4
      Page(s):
    734-738

    In this letter, we discuss the ambiguity function of interleaved sequences. Furthermore, using the Guassian sum and choosing binary m-sequences as column sequences, we investigate the property of a binary sequence set given by Zhou, Tang, Gong (IEEE Trans. Inf. Theory, 54(9), 2008), which has low ambiguity property in a large region. Those sequences could be used in radar systems.

  • Deep Gaussian Denoising Network Based on Morphological Operators with Low-Precision Arithmetic

    Hikaru FUJISAKI  Makoto NAKASHIZUKA  

     
    PAPER-Image, Digital Signal Processing

      Pubricized:
    2021/11/08
      Vol:
    E105-A No:4
      Page(s):
    631-638

    This paper presents a deep network based on morphological filters for Gaussian denoising. The morphological filters can be applied with only addition, max, and min functions and require few computational resources. Therefore, the proposed network is suitable for implementation using a small microprocessor. Each layer of the proposed network consists of a top-hat transform, which extracts small peaks and valleys of noise components from the input image. Noise components are iteratively reduced in each layer by subtracting the noise components from the input image. In this paper, the extensions of opening and closing are introduced as linear combinations of the morphological filters for the top-hat transform of this deep network. Multiplications are only required for the linear combination of the morphological filters in the proposed network. Because almost all parameters of the network are structuring elements of the morphological filters, the feature maps and parameters can be represented in short bit-length integer form, which is suitable for implementation with single instructions, multiple data (SIMD) instructions. Denoising examples show that the proposed network obtains denoising results comparable to those of BM3D [1] without linear convolutions and with approximately one tenth the number of parameters of a full-scale deep convolutional neural network [2]. Moreover, the computational time of the proposed method using SIMD instructions of a microprocessor is also presented.

881-900hit(21534hit)