The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

841-860hit(21534hit)

  • Reinforced Tracker Based on Hierarchical Convolutional Features

    Xin ZENG  Lin ZHANG  Zhongqiang LUO  Xingzhong XIONG  Chengjie LI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/10
      Vol:
    E105-D No:6
      Page(s):
    1225-1233

    In recent years, the development of visual tracking is getting better and better, but some methods cannot overcome the problem of low accuracy and success rate of tracking. Although there are some trackers will be more accurate, they will cost more time. In order to solve the problem, we propose a reinforced tracker based on Hierarchical Convolutional Features (HCF for short). HOG, color-naming and grayscale features are used with different weights to supplement the convolution features, which can enhance the tracking robustness. At the same time, we improved the model update strategy to save the time costs. This tracker is called RHCF and the code is published on https://github.com/z15846/RHCF. Experiments on the OTB2013 dataset show that our tracker can validly achieve the promotion of the accuracy and success rate.

  • Facial Recognition of Dairy Cattle Based on Improved Convolutional Neural Network

    Zhi WENG  Longzhen FAN  Yong ZHANG  Zhiqiang ZHENG  Caili GONG  Zhongyue WEI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/02
      Vol:
    E105-D No:6
      Page(s):
    1234-1238

    As the basis of fine breeding management and animal husbandry insurance, individual recognition of dairy cattle is an important issue in the animal husbandry management field. Due to the limitations of the traditional method of cow identification, such as being easy to drop and falsify, it can no longer meet the needs of modern intelligent pasture management. In recent years, with the rise of computer vision technology, deep learning has developed rapidly in the field of face recognition. The recognition accuracy has surpassed the level of human face recognition and has been widely used in the production environment. However, research on the facial recognition of large livestock, such as dairy cattle, needs to be developed and improved. According to the idea of a residual network, an improved convolutional neural network (Res_5_2Net) method for individual dairy cow recognition is proposed based on dairy cow facial images in this letter. The recognition accuracy on our self-built cow face database (3012 training sets, 1536 test sets) can reach 94.53%. The experimental results show that the efficiency of identification of dairy cows is effectively improved.

  • Detection of Trust Shilling Attacks in Recommender Systems

    Xian CHEN  Xi DENG  Chensen HUANG  Hyoseop SHIN  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/03/02
      Vol:
    E105-D No:6
      Page(s):
    1239-1242

    Most research on detecting shilling attacks focuses on users' rating behavior but does not consider that attackers may also attack the users' trusting behavior. For example, attackers may give a low score to other users' ratings so that people would think the ratings from the users are not helpful. In this paper, we define the trust shilling attack, propose the behavior features of trust attacks, and present an effective detection method using machine learning methods. The experimental results demonstrate that, based on our proposed behavior features of trust attacks, we can detect trust shilling attacks as well as traditional shilling attacks accurately.

  • Single-Image Camera Calibration for Furniture Layout Using Natural-Marker-Based Augmented Reality

    Kazumoto TANAKA  Yunchuan ZHANG  

     
    LETTER-Multimedia Pattern Processing

      Pubricized:
    2022/03/09
      Vol:
    E105-D No:6
      Page(s):
    1243-1248

    We propose an augmented-reality-based method for arranging furniture using natural markers extracted from the edges of the walls of rooms. The proposed method extracts natural markers and estimates the camera parameters from single images of rooms using deep neural networks. Experimental results show that in all the measurements, the superimposition error of the proposed method was lower than that of general marker-based methods that use practical-sized markers.

  • Gene Fingerprinting: Cracking Encrypted Tunnel with Zero-Shot Learning

    Ding LI  Chunxiang GU  Yuefei ZHU  

     
    PAPER-Information Network

      Pubricized:
    2022/03/23
      Vol:
    E105-D No:6
      Page(s):
    1172-1184

    Website Fingerprinting (WF) enables a passive attacker to identify which website a user is visiting over an encrypted tunnel. Current WF attacks have two strong assumptions: (i) specific tunnel, i.e., the attacker can train on traffic samples collected in a simulated tunnel with the same tunnel settings as the user, and (ii) pseudo-open-world, where the attacker has access to training samples of unmonitored sites and treats them as a separate class. These assumptions, while experimentally feasible, render WF attacks less usable in practice. In this paper, we present Gene Fingerprinting (GF), a new WF attack that achieves cross-tunnel transferability by generating fingerprints that reflect the intrinsic profile of a website. The attack leverages Zero-shot Learning — a machine learning technique not requiring training samples to identify a given class — to reduce the effort to collect data from different tunnels and achieve a real open-world. We demonstrate the attack performance using three popular tunneling tools: OpenSSH, Shadowsocks, and OpenVPN. The GF attack attains over 94% accuracy on each tunnel, far better than existing CUMUL, DF, and DDTW attacks. In the more realistic open-world scenario, the attack still obtains 88% TPR and 9% FPR, outperforming the state-of-the-art attacks. These results highlight the danger of our attack in various scenarios where gathering and training on a tunnel-specific dataset would be impractical.

  • Improvement of Radiation Efficiency for Platform-Mounted Small Antenna by Evaluation of Characteristic Mode with Metal Casing Using Infinitesimal Dipole

    Takumi NISHIME  Hiroshi HASHIGUCHI  Naobumi MICHISHITA  Hisashi MORISHITA  

     
    PAPER-Antennas

      Pubricized:
    2021/12/14
      Vol:
    E105-B No:6
      Page(s):
    722-728

    Platform-mounted small antennas increase dielectric loss and conductive loss and decrease the radiation efficiency. This paper proposes a novel antenna design method to improve radiation efficiency for platform-mounted small antennas by characteristic mode analysis. The proposed method uses mapping of modal weighting coefficient (MWC) and infinitesimal dipole and evaluate the metal casing with 100mm × 55mm × 23mm as a platform excited by an inverted-F antenna. The simulation and measurement results show that the radiation efficiency of 5% is improved with the whole system from 2.5% of the single antenna.

  • Indoor Partition Attenuations and Base Station Deployments for the 5G Wireless Communications

    Chi-Min LI  Dong-Lin LU  Pao-Jen WANG  

     
    PAPER-Propagation

      Pubricized:
    2021/12/03
      Vol:
    E105-B No:6
      Page(s):
    729-736

    Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth shortage below 6GHz (sub-6G), future wireless communications can be up-converted to the millimeter-wave (mm-wave) bands. Nevertheless, mm-wave frequency bands suffer from high channel attenuation and serious penetration loss compared with sub-6G frequency bands, and the signal transmission in the indoor environment will furthermore be affected by various partition materials, such as concrete, wood, glass, etc. Therefore, the fifth-generation (5G) mobile communication system may use multiple small cells (SC) to overcome the signal attenuation caused by using mm-wave bands. This paper will analyze the attenuation characteristics of some common partition materials in indoor environments. Besides, the performances, such as the received signal power, signal to interference plus noise ratio (SINR) and system capacity for different SC deployments are simulated and analyzed to provide the suitable guideline for each SC deployments.

  • In Search of the Performance- and Energy-Efficient CNN Accelerators Open Access

    Stanislav SEDUKHIN  Yoichi TOMIOKA  Kohei YAMAMOTO  

     
    PAPER

      Pubricized:
    2021/12/03
      Vol:
    E105-C No:6
      Page(s):
    209-221

    In this paper, starting from the algorithm, a performance- and energy-efficient 3D structure or shape of the Tensor Processing Engine (TPE) for CNN acceleration is systematically searched and evaluated. An optimal accelerator's shape maximizes the number of concurrent MAC operations per clock cycle while minimizes the number of redundant operations. The proposed 3D vector-parallel TPE architecture with an optimal shape can be very efficiently used for considerable CNN acceleration. Due to implemented support of inter-block image data independency, it is possible to use multiple of such TPEs for the additional CNN acceleration. Moreover, it is shown that the proposed TPE can also be uniformly used for acceleration of the different CNN models such as VGG, ResNet, YOLO, and SSD. We also demonstrate that our theoretical efficiency analysis is matched with the result of a real implementation for an SSD model to which a state-of-the-art channel pruning technique is applied.

  • A Metadata Prefetching Mechanism for Hybrid Memory Architectures Open Access

    Shunsuke TSUKADA  Hikaru TAKAYASHIKI  Masayuki SATO  Kazuhiko KOMATSU  Hiroaki KOBAYASHI  

     
    PAPER

      Pubricized:
    2021/12/03
      Vol:
    E105-C No:6
      Page(s):
    232-243

    A hybrid memory architecture (HMA) that consists of some distinct memory devices is expected to achieve a good balance between high performance and large capacity. Unlike conventional memory architectures, the HMA needs the metadata for data management since the data are migrated between the memory devices during the execution of an application. The memory controller caches the metadata to avoid accessing the memory devices for the metadata reference. However, as the amount of the metadata increases in proportion to the size of the HMA, the memory controller needs to handle a large amount of metadata. As a result, the memory controller cannot cache all the metadata and increases the number of metadata references. This results in an increase in the access latency to reach the target data and degrades the performance. To solve this problem, this paper proposes a metadata prefetching mechanism for HMAs. The proposed mechanism loads the metadata needed in the near future by prefetching. Moreover, to increase the effect of the metadata prefetching, the proposed mechanism predicts the metadata used in the near future based on an address difference that is the difference between two consecutive access addresses. The evaluation results show that the proposed metadata prefetching mechanism can improve the instructions per cycle by up to 44% and 9% on average.

  • Cluster Expansion Method for Critical Node Problem Based on Contraction Mechanism in Sparse Graphs

    Zheng WANG  Yi DI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/02/24
      Vol:
    E105-D No:6
      Page(s):
    1135-1149

    The objective of critical nodes problem is to minimize pair-wise connectivity as a result of removing a specific number of nodes in the residual graph. From a mathematical modeling perspective, it comes the truth that the more the number of fragmented components and the evenly distributed of disconnected sub-graphs, the better the quality of the solution. Basing on this conclusion, we proposed a new Cluster Expansion Method for Critical Node Problem (CEMCNP), which on the one hand exploits a contraction mechanism to greedy simplify the complexity of sparse graph model, and on the other hand adopts an incremental cluster expansion approach in order to maintain the size of formed component within reasonable limitation. The proposed algorithm also relies heavily on the idea of multi-start iterative local search algorithm, whereas brings in a diversified late acceptance local search strategy to keep the balance between interleaving diversification and intensification in the process of neighborhood search. Extensive evaluations show that CEMCNP running on 35 of total 42 benchmark instances are superior to the outcome of KBV, while holding 3 previous best results out of the challenging instances. In addition, CEMCNP also demonstrates equivalent performance in comparison with the existing MANCNP and VPMS algorithms over 22 of total 42 graph models with fewer number of node exchange operations.

  • Software Implementation of Optimal Pairings on Elliptic Curves with Odd Prime Embedding Degrees

    Yu DAI  Zijian ZHOU  Fangguo ZHANG  Chang-An ZHAO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/11/26
      Vol:
    E105-A No:5
      Page(s):
    858-870

    Pairing computations on elliptic curves with odd prime degrees are rarely studied as low efficiency. Recently, Clarisse, Duquesne and Sanders proposed two new curves with odd prime embedding degrees: BW13-P310 and BW19-P286, which are suitable for some special cryptographic schemes. In this paper, we propose efficient methods to compute the optimal ate pairing on this types of curves, instantiated by the BW13-P310 curve. We first extend the technique of lazy reduction into the finite field arithmetic. Then, we present a new method to execute Miller's algorithm. Compared with the standard Miller iteration formulas, the new ones provide a more efficient software implementation of pairing computations. At last, we also give a fast formula to perform the final exponentiation. Our implementation results indicate that it can be computed efficiently, while it is slower than that over the (BLS12-P446) curve at the same security level.

  • Particle Filter Design Based on Reinforcement Learning and Its Application to Mobile Robot Localization

    Ryota YOSHIMURA  Ichiro MARUTA  Kenji FUJIMOTO  Ken SATO  Yusuke KOBAYASHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/01/28
      Vol:
    E105-D No:5
      Page(s):
    1010-1023

    Particle filters have been widely used for state estimation problems in nonlinear and non-Gaussian systems. Their performance depends on the given system and measurement models, which need to be designed by the user for each target system. This paper proposes a novel method to design these models for a particle filter. This is a numerical optimization method, where the particle filter design process is interpreted into the framework of reinforcement learning by assigning the randomnesses included in both models of the particle filter to the policy of reinforcement learning. In this method, estimation by the particle filter is repeatedly performed and the parameters that determine both models are gradually updated according to the estimation results. The advantage is that it can optimize various objective functions, such as the estimation accuracy of the particle filter, the variance of the particles, the likelihood of the parameters, and the regularization term of the parameters. We derive the conditions to guarantee that the optimization calculation converges with probability 1. Furthermore, in order to show that the proposed method can be applied to practical-scale problems, we design the particle filter for mobile robot localization, which is an essential technology for autonomous navigation. By numerical simulations, it is demonstrated that the proposed method further improves the localization accuracy compared to the conventional method.

  • Resilient Virtual Network Embedding Ensuring Connectivity under Substrate Node Failures

    Nagao OGINO  

     
    PAPER-Network

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    557-568

    A variety of smart services are being provided on multiple virtual networks embedded into a common inter-cloud substrate network. The substrate network operator deploys critical substrate nodes so that multiple service providers can achieve enhanced services due to the secure sharing of their service data. Even if one of the critical substrate nodes incurs damage, resiliency of the enhanced services can be assured due to reallocation of the workload and periodic backup of the service data to the other normal critical substrate nodes. However, the connectivity of the embedded virtual networks must be maintained so that the enhanced services can be continuously provided to all clients on the virtual networks. This paper considers resilient virtual network embedding (VNE) that ensures the connectivity of the embedded virtual networks after critical substrate node failures have occurred. The resilient VNE problem is formulated using an integer linear programming model and a distance-based method is proposed to solve the large-scale resilient VNE problem efficiently. Simulation results demonstrate that the distance-based method can derive a sub-optimum VNE solution with a small computational effort. The method derived a VNE solution with an approximation ratio of less than 1.2 within ten seconds in all the simulation experiments.

  • Localization of Pointed-At Word in Printed Documents via a Single Neural Network

    Rubin ZHAO  Xiaolong ZHENG  Zhihua YING  Lingyan FAN  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/01/26
      Vol:
    E105-D No:5
      Page(s):
    1075-1084

    Most existing object detection methods and text detection methods are mainly designed to detect either text or objects. In some scenarios where the task is to find the target word pointed-at by an object, results of existing methods are far from satisfying. However, such scenarios happen often in human-computer interaction, when the computer needs to figure out which word the user is pointing at. Comparing with object detection, pointed-at word localization (PAWL) requires higher accuracy, especially in dense text scenarios. Moreover, in printed document, characters are much smaller than those in scene text detection datasets such as ICDAR-2013, ICDAR-2015 and ICPR-2018 etc. To address these problems, the authors propose a novel target word localization network (TWLN) to detect the pointed-at word in printed documents. In this work, a single deep neural network is trained to extract the features of markers and text sequentially. For each image, the location of the marker is predicted firstly, according to the predicted location, a smaller image is cropped from the original image and put into the same network, then the location of pointed-at word is predicted. To train and test the networks, an efficient approach is proposed to generate the dataset from PDF format documents by inserting markers pointing at the words in the documents, which avoids laborious labeling work. Experiments on the proposed dataset demonstrate that TWLN outperforms the compared object detection method and optical character recognition method on every category of targets, especially when the target is a single character that only occupies several pixels in the image. TWLN is also tested with real photographs, and the accuracy shows no significant differences, which proves the validity of the generating method to construct the dataset.

  • Evaluation and Test of Production Defects in Hardened Latches

    Ruijun MA  Stefan HOLST  Xiaoqing WEN  Aibin YAN  Hui XU  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/02/07
      Vol:
    E105-D No:5
      Page(s):
    996-1009

    As modern CMOS circuits fabricated with advanced technology nodes are becoming more and more susceptible to soft-errors, many hardened latches have been proposed for reliable LSI designs. We reveal for the first time that production defects in such hardened latches can cause two serious problems: (1) these production defects are difficult to detect with conventional scan test and (2) these production defects can reduce the reliability of hardened latches. This paper systematically addresses these two problems with three major contributions: (1) Post-Test Vulnerability Factor (PTVF), a first-of-its-kind metric for quantifying the impact of production defects on hardened latches, (2) a novel Scan-Test-Aware Hardened Latch (STAHL) design that has the highest defect coverage compared to state-of-the-art hardened latch designs, and (3) an STAHL-based scan test procedure. Comprehensive simulation results demonstrate the accuracy of the proposed PTVF metric and the effectiveness of the STAHL-based scan test. As the first comprehensive study bridging the gap between hardened latch design and LSI testing, the findings of this paper will significantly improve the soft-error-related reliability of LSI designs for safety-critical applications.

  • Toward Generating Robot-Robot Natural Counseling Dialogue

    Tomoya HASHIGUCHI  Takehiro YAMAMOTO  Sumio FUJITA  Hiroaki OHSHIMA  

     
    PAPER

      Pubricized:
    2022/02/07
      Vol:
    E105-D No:5
      Page(s):
    928-935

    In this study, we generate dialogue contents in which two systems discuss their distress with each other. The user inputs sentences that include environment and feelings of distress. The system generates the dialogue content from the input. In this study, we created dialogue data about distress in order to generate them using deep learning. The generative model fine-tunes the GPT of the pre-trained model using the TransferTransfo method. The contribution of this study is the creation of a conversational dataset using publicly available data. This study used EmpatheticDialogues, an existing empathetic dialogue dataset, and Reddit r/offmychest, a public data set of distress. The models fine-tuned with each data were evaluated both automatically (such as by the BLEU and ROUGE scores) and manually (such as by relevance and empathy) by human assessors.

  • Research on the Algorithm of License Plate Recognition Based on MPGAN Haze Weather

    Weiguo ZHANG  Jiaqi LU  Jing ZHANG  Xuewen LI  Qi ZHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/02/21
      Vol:
    E105-D No:5
      Page(s):
    1085-1093

    The haze situation will seriously affect the quality of license plate recognition and reduce the performance of the visual processing algorithm. In order to improve the quality of haze pictures, a license plate recognition algorithm based on haze weather is proposed in this paper. The algorithm in this paper mainly consists of two parts: The first part is MPGAN image dehazing, which uses a generative adversarial network to dehaze the image, and combines multi-scale convolution and perceptual loss. Multi-scale convolution is conducive to better feature extraction. The perceptual loss makes up for the shortcoming that the mean square error (MSE) is greatly affected by outliers; the second part is to recognize the license plate, first we use YOLOv3 to locate the license plate, the STN network corrects the license plate, and finally enters the improved LPRNet network to get license plate information. Experimental results show that the dehazing model proposed in this paper achieves good results, and the evaluation indicators PSNR and SSIM are better than other representative algorithms. After comparing the license plate recognition algorithm with the LPRNet algorithm, the average accuracy rate can reach 93.9%.

  • Anomaly Detection Using Spatio-Temporal Context Learned by Video Clip Sorting

    Wen SHAO  Rei KAWAKAMI  Takeshi NAEMURA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/02/08
      Vol:
    E105-D No:5
      Page(s):
    1094-1102

    Previous studies on anomaly detection in videos have trained detectors in which reconstruction and prediction tasks are performed on normal data so that frames on which their task performance is low will be detected as anomalies during testing. This paper proposes a new approach that involves sorting video clips, by using a generative network structure. Our approach learns spatial contexts from appearances and temporal contexts from the order relationship of the frames. Experiments were conducted on four datasets, and we categorized the anomalous sequences by appearance and motion. Evaluations were conducted not only on each total dataset but also on each of the categories. Our method improved detection performance on both anomalies with different appearance and different motion from normality. Moreover, combining our approach with a prediction method produced improvements in precision at a high recall.

  • Unfolding Hidden Structures in Cyber-Physical Systems for Thorough STPA Analysis

    Sejin JUNG  Eui-Sub KIM  Junbeom YOO  

     
    LETTER-Software Engineering

      Pubricized:
    2022/02/10
      Vol:
    E105-D No:5
      Page(s):
    1103-1106

    Traditional safety analysis techniques have shown difficulties in incorporating dynamically changing structures of CPSs (Cyber-Physical Systems). STPA (System-Theoretic Process Analysis), one of the widely used, needs to unfold and arrange all hidden structures before beginning a full-fledged analysis. This paper proposes an intermediate model “Information Unfolding Model (IUM)” and a process “Information Unfolding Process (IUP)” to unfold dynamic structures which are hidden in CPSs and so help analysts construct control structures in STPA thoroughly.

  • Efficient Multi-Scale Feature Fusion for Image Manipulation Detection

    Yuxue ZHANG  Guorui FENG  

     
    LETTER-Information Network

      Pubricized:
    2022/02/03
      Vol:
    E105-D No:5
      Page(s):
    1107-1111

    Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.

841-860hit(21534hit)