The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

641-660hit(21534hit)

  • Emitter Tracking via Direct Target Motion Analysis

    Yiqi CHEN  Ping WEI  Gaiyou LI  Huaguo ZHANG  Hongshu LIAO  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1522-1536

    This paper considers tracking of a non-cooperative emitter based on a single sensor. To this end, the direct target motion analysis (DTMA) approach, where the target state is straightforwardly achieved from the received signal, is exploited. In order to achieve observability, the sensor has to perform a maneuver relative to the emitter. By suitably building an approximated likelihood function, the unscented Kalman filter (UKF), which is able to work under high nonlinearity of the measurement model, is adopted to recursively estimate the target state. Besides, the posterior Cramér-Rao bound (PCRB) of DTMA, which can be used as performance benchmark, is also achieved. The effectiveness of proposed method is verified via simulation experiments.

  • Substring Searchable Symmetric Encryption Based on an Improved DAWG

    Hiroaki YAMAMOTO  Ryosuke ODA  Yoshihiro WACHI  Hiroshi FUJIWARA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1578-1590

    A searchable symmetric encryption (SSE) scheme is a method that searches encrypted data without decrypting it. In this paper, we address the substring search problem such that for a set D of documents and a pattern p, we find all occurrences of p in D. Here, a document and a pattern are defined as a string. A directed acyclic word graph (DAWG), which is a deterministic finite automaton, is known for solving a substring search problem on a plaintext. We improve a DAWG so that all transitions of a DAWG have distinct symbols. Besides, we present a space-efficient and secure substring SSE scheme using an improved DAWG. The proposed substring SSE scheme consists of an index with a simple structure, and the size is O(n) for the total size n of documents.

  • Performance Analysis of Mobile Cellular Networks Accommodating Cellular-IoT Communications with Immediate Release of Radio Resources

    Shuya ABE  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Network

      Pubricized:
    2022/06/20
      Vol:
    E105-B No:12
      Page(s):
    1477-1486

    It is now becoming important for mobile cellular networks to accommodate all kinds of Internet of Things (IoT) communications. However, the contention-based random access and radio resource allocation used in traditional cellular networks, which are optimized mainly for human communications, cannot efficiently handle large-scale IoT communications. For this reason, standardization activities have emerged to serve IoT devices such as Cellular-IoT (C-IoT). However, few studies have been directed at evaluating the performance of C-IoT communications with periodic data transmissions, despite this being a common characteristic of many IoT communications. In this paper, we give the performance analysis results of mobile cellular networks supporting periodic C-IoT communications, focusing on the performance differences between LTE and Narrowband-IoT (NB-IoT) networks. To achieve this, we first construct an analysis model for end-to-end performance of both the control plane and data plane, including random access procedures, radio resource allocation, establishing bearers in the Evolved Packet Core network, and user-data transmissions. In addition, we include the impact of the immediate release of the radio resources proposed in 3GPP. Numerical evaluations show that NB-IoT can support more IoT devices than LTE, up to 8.7 times more, but imposes a significant delay in data transmissions. We also confirm that the immediate release of radio resources increases the network capacity by up to 17.7 times.

  • Random Access Identifier-Linked Receiver Beamforming with Transmitter Filtering in TDD-Based Random Access Open Access

    Yuto MUROKI  Yotaro MURAKAMI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/05/25
      Vol:
    E105-B No:12
      Page(s):
    1548-1558

    This paper proposes a novel random access identifier (RAID)-linked receiver beamforming method for time division duplex (TDD)-based random access. When the number of receiver antennas at the base station is large in a massive multiple-input multiple-output (MIMO) scenario, the channel estimation accuracy per receiver antenna at the base station receiver is degraded due to the limited received signal power per antenna from the user terminal. This results in degradation in the receiver beamforming (BF) or antenna diversity combining and active RAID detection. The purpose of the proposed method is to achieve accurate active RAID detection and channel estimation with a reasonable level of computational complexity at the base station receiver. In the proposed method, a unique receiver BF vector applied at the base station is linked to each of the M RAIDs prepared by the system. The user terminal selects an appropriate pair comprising a receiver BF vector and a RAID in advance based on the channel estimation results in the downlink assuming channel reciprocity in a TDD system. Therefore, per-receiver antenna channel estimation for receiver BF is not necessary in the proposed method. Furthermore, in order to utilize fully the knowledge of the channel at the user transmitter, we propose applying transmitter filtering (TF) to the proposed method for effective channel shortening in order to increase the orthogonal preambles for active RAID detection and channel estimation prepared for each RAID. Computer simulation results show that the proposed method greatly improves the accuracy of active RAID detection and channel estimation. This results in lower error rates than that for the conventional method performing channel estimation at each antenna in a massive MIMO environment.

  • How to Make a Secure Index for Searchable Symmetric Encryption, Revisited

    Yohei WATANABE  Takeshi NAKAI  Kazuma OHARA  Takuya NOJIMA  Yexuan LIU  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/05/25
      Vol:
    E105-A No:12
      Page(s):
    1559-1577

    Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE becomes an active area of encrypted search. In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al. First, we show that SSE-2 does not appropriately implement Curtmola et al.'s construction idea for dummy addition. We refine SSE-2's (and its variants') dummy-adding procedure to keep the number of dummies sufficiently many but as small as possible. We then show how to extend it to the dynamic setting while keeping the dummy-adding procedure work well and implement our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a search error when a searched keyword is not contained in any document file stored at a server and show how to fix it.

  • MemFRCN: Few Shot Object Detection with Memorable Faster-RCNN

    TongWei LU  ShiHai JIA  Hao ZHANG  

     
    LETTER-Vision

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1626-1630

    At this stage, research in the field of Few-shot image classification (FSC) has made good progress, but there are still many difficulties in the field of Few-shot object detection (FSOD). Almost all of the current FSOD methods face catastrophic forgetting problems, which are manifested in that the accuracy of base class recognition will drop seriously when acquiring the ability to recognize Novel classes. And for many methods, the accuracy of the model will fall back as the class increases. To address this problem we propose a new memory-based method called Memorable Faster R-CNN (MemFRCN), which makes the model remember the categories it has already seen. Specifically, we propose a new tow-stage object detector consisting of a memory-based classifier (MemCla), a fully connected neural network classifier (FCC) and an adaptive fusion block (AdFus). The former stores the embedding vector of each category as memory, which enables the model to have memory capabilities to avoid catastrophic forgetting events. The final part fuses the outputs of FCC and MemCla, which can automatically adjust the fusion method of the model when the number of samples increases so that the model can achieve better performance under various conditions. Our method can perform well on unseen classes while maintaining the detection accuracy of seen classes. Experimental results demonstrate that our method outperforms other current methods on multiple benchmarks.

  • Vehicle Re-Identification Based on Quadratic Split Architecture and Auxiliary Information Embedding

    Tongwei LU  Hao ZHANG  Feng MIN  Shihai JIA  

     
    LETTER-Image

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1621-1625

    Convolutional neural network (CNN) based vehicle re-identificatioin (ReID) inevitably has many disadvantages, such as information loss caused by downsampling operation. Therefore we propose a vision transformer (Vit) based vehicle ReID method to solve this problem. To improve the feature representation of vision transformer and make full use of additional vehicle information, the following methods are presented. (I) We propose a Quadratic Split Architecture (QSA) to learn both global and local features. More precisely, we split an image into many patches as “global part” and further split them into smaller sub-patches as “local part”. Features of both global and local part will be aggregated to enhance the representation ability. (II) The Auxiliary Information Embedding (AIE) is proposed to improve the robustness of the model by plugging a learnable camera/viewpoint embedding into Vit. Experimental results on several benchmarks indicate that our method is superior to many advanced vehicle ReID methods.

  • Novel Network Structure and its Clustering Scheme Based on Residual Power for Wireless Powered Wireless Sensor Networks

    Kazuhisa HARAGUCHI  Kosuke SANADA  Hiroyuki HATANO  Kazuo MORI  

     
    PAPER-Network

      Pubricized:
    2022/05/19
      Vol:
    E105-B No:12
      Page(s):
    1498-1507

    In wireless sensor networks (WSNs), wireless power transfer (WPT) has been studied as an energy-harvesting technique for prolonging their network lifetime. The WPT can supply power resources to sensor nodes (SNs) wirelessly, however, the reception (harvesting) power at SNs depends on their distance from a WPT equipment (WPTE), leading to the location-dependent non-uniformity in the reception power among SNs. For the fixed-located WPTE, SNs distant from the WPTE suffer from insufficient reception power. To handle this problem, this paper proposes a novel network structure introducing multiple hybrid access points (HAPs), which equip two functions of conventional cluster head function, including data collection and relay transmission, and WPT function. Then, these HAPs take terms providing both functions. By periodically rotating the HAP providing the WPT function, the location of the WPTE can be changed, which reduces the non-uniformity in the SN reception power. Also, this paper proposes a clustering scheme based on the residual power at SNs to reduce their power depletion under the proposed network structure. The evaluation results through computer simulation show that the proposed system reduces the non-uniformity in the SN reception power and the power depletion at the SNs and then improves the data collection rate, compared with the conventional systems.

  • A Rate-Based Congestion Control Method for NDN Using Sparse Explicit Rate Notification and AIMD-Based Rate Adjustment

    Takahiko KATO  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1519-1529

    In this paper, we propose a new rate-based congestion control method for Named Data Networking (NDN) using additive increase multiplicative decrease (AIMD) and explicit rate notification. In the proposed method, routers notify a corresponding consumer of bottleneck bandwidth by use of Data packets, in a relatively long interval. In addition, routers monitor outgoing faces using the leaky bucket mechanism. When congestion is detected, the routers report this to corresponding consumers using negative-acknowledgment (NACK) packets. A consumer sets its Interest sending rate to the reported rate when a new value is reported. In addition, the consumer adjusts the sending rate to be around the reported rate based on the AIMD mechanism at Data/NACK packet reception. Computer simulations show that the proposed method achieves a high throughput performance and max-min fairness thanks to the effective congestion avoidance.

  • Sigma-Delta Beamformer DOA Estimation for Distributed Array Radar Open Access

    Toshihiro ITO  Shoji MATSUDA  Yoshiya KASAHARA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1589-1599

    Distributed array radars consist of multiple sub-arrays separated by tens to hundreds of wavelengths and can match narrow beamwidths with large-aperture, high-gain antennas. The physical independence of the sub-arrays contributes to significant structure flexibility and is one of the advantages of such radars. However, a typical problem is the grating lobes in the digital beam forming (DBF) beam pattern. Unfortunately, the need to suppress the generation of grating lobes makes the design of acceptable sub-array arrangements very difficult. A sigma-delta beam former direction of arrival (DOA) estimation method is proposed in this study to solve this problem. The proposed method performs DOA estimation by acquiring the difference signals in addition to the sum signals of all sub-arrays. The difference signal is typically used for monopulse DOA estimation in the phased array radar. The sigma-delta beamformer simultaneously has both advantages of DOA estimations using a distributed array with a large aperture length and using a sub-array that is not affected by the grating lobe. The proposed method can improve the DOA estimation accuracy over the conventional method under grating lobe situations and help the distributed array radar achieve flexibility in the sub-array arrangement. Numerical simulations are presented to verify the effectiveness of the proposed DOA estimation method.

  • Accurate Doppler Velocity Estimation by Iterative WKD Algorithm for Pulse-Doppler Radar

    Takumi HAYASHI  Takeru ANDO  Shouhei KIDERA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/29
      Vol:
    E105-B No:12
      Page(s):
    1600-1613

    In this study, we propose an accurate range-Doppler analysis algorithm for moving multiple objects in a short range using microwave (including millimeter wave) radars. As a promising Doppler analysis for the above model, we previously proposed a weighted kernel density (WKD) estimator algorithm, which overcomes several disadvantages in coherent integration based methods, such as a trade-off between temporal and frequency resolutions. However, in handling multiple objects like human body, it is difficult to maintain the accuracy of the Doppler velocity estimation, because there are multiple responses from multiple parts of object, like human body, incurring inaccuracies in range or Doppler velocity estimation. To address this issue, we propose an iterative algorithm by exploiting an output of the WKD algorithm. Three-dimensional numerical analysis, assuming a human body model in motion, and experimental tests demonstrate that the proposed algorithm provides more accurate, high-resolution range-Doppler velocity profiles than the original WKD algorithm, without increasing computational complexity. Particularly, the simulation results show that the cumulative probabilities of range errors within 10mm, and Doppler velocity error within 0.1m/s are enhanced from 34% (by the former method) to 63% (by the proposed method).

  • Design for Operation in Two Frequency Bands by Division of the Coupled Region in a Waveguide 2-Plane Coupler

    Shihao CHEN  Takashi TOMURA  Jiro HIROKAWA  Kota ITO  Mizuki SUGA  Yushi SHIRATO  Daisei UCHIDA  Naoki KITA  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/05/23
      Vol:
    E105-C No:12
      Page(s):
    729-739

    A waveguide 2-plane hybrid coupler with two operating bands is proposed. The cross-sectional shape of the coupled region inside the proposed coupler is designed with a two-dimensional arbitrary geometry sorting method. Simulations of the proposed hybrid coupler has a fractional bandwidth (FBW) of 2.17% at the center of 24.99GHz, and at the center of 28.28GHz an FBW of 6.13%. The proposed coupler is analyzed by the mode-matching finite-element hybrid method, and the final result is obtained using a genetic algorithm. The analyzed result of the coupling for the main modes in the coupled region is presented. The design result is confirmed by measurements.

  • Noise Suppression in SiC-MOSFET Body Diode Turn-Off Operation with Simple and Robust Gate Driver

    Hiroshi SUZUKI  Tsuyoshi FUNAKI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/06/14
      Vol:
    E105-C No:12
      Page(s):
    750-760

    SiC-MOSFETs are being increasingly implemented in power electronics systems as low-loss, fast switching devices. Despite the advantages of an SiC-MOSFET, its large dv/dt or di/dt has fear of electromagnetic interference (EMI) noise. This paper proposes and demonstrates a simple and robust gate driver that can suppress ringing oscillation and surge voltage induced by the turn-off of the SiC-MOSFET body diode. The proposed gate driver utilizes the channel leakage current methodology (CLC) to enhance the damping effect by elevating the gate-source voltage (VGS) and inducing the channel leakage current in the device. The gate driver can self-adjust the timing of initiating CLC operation, which avoids an increase in switching loss. Additionally, the output voltage of the VGS elevation circuit does not need to be actively controlled in accordance with the operating conditions. Thus, the circuit topology is simple, and ringing oscillation can be easily attenuated with fixed circuit parameters regardless of operating conditions, minimizing the increase in switching loss. The effectiveness and versatility of proposed gate driver were experimentally validated for a wide range of operating conditions by double and single pulse switching tests.

  • Design of a Dual-Wideband BPF with Parallel-Coupled Stepped Impedance Resonator and Open-Circuited Stubs

    Chun-Ping CHEN  Zhewang MA  Tetsuo ANADA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/15
      Vol:
    E105-C No:12
      Page(s):
    761-766

    This brief paper proposes a dual-wideband filter consisting of a parallel-coupled stepped-impedance-resonator (SIR) and open-circuited stubs. Firstly, a notched UWB (ultra-wideband) bandpass filter (BPF) with steep skirt characteristics is theoretically designed. Then a bandstop filter(BSF) is implemented using an SIR and open stubs. By replacing the transmission line part of UWB filter with the BSF, a novel dual-wideband filter (DWBPF) is realized. As a design example, a DWBPF with two passbands, i.e. 3.4-4.8GHz and 7.25-10.25GHz, is designed to validate the design procedure. The designed filter exhibits steep skirt characteristics.

  • A Hybrid Integer Encoding Method for Obtaining High-Quality Solutions of Quadratic Knapsack Problems on Solid-State Annealers

    Satoru JIMBO  Daiki OKONOGI  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2022/05/26
      Vol:
    E105-D No:12
      Page(s):
    2019-2031

    For formulating Quadratic Knapsack Problems (QKPs) into the form of Quadratic Unconstrained Binary Optimization (QUBO), it is necessary to introduce an integer variable, which converts and incorporates the knapsack capacity constraint into the overall energy function. In QUBO, this integer variable is encoded with auxiliary binary variables, and the encoding method used for it affects the behavior of Simulated Annealing (SA) significantly. For improving the efficiency of SA for QKP instances, this paper first visualized and analyzed their annealing processes encoded by conventional binary and unary encoding methods. Based on this analysis, we proposed a novel hybrid encoding (HE), getting the best of both worlds. The proposed HE obtained feasible solutions in the evaluation, outperforming the others in small- and medium-scale models.

  • Multilayer Perceptron Training Accelerator Using Systolic Array

    Takeshi SENOO  Akira JINGUJI  Ryosuke KURAMOCHI  Hiroki NAKAHARA  

     
    PAPER

      Pubricized:
    2022/07/21
      Vol:
    E105-D No:12
      Page(s):
    2048-2056

    Multilayer perceptron (MLP) is a basic neural network model that is used in practical industrial applications, such as network intrusion detection (NID) systems. It is also used as a building block in newer models, such as gMLP. Currently, there is a demand for fast training in NID and other areas. However, in training with numerous GPUs, the problems of power consumption and long training times arise. Many of the latest deep neural network (DNN) models and MLPs are trained using a backpropagation algorithm which transmits an error gradient from the output layer to the input layer such that in the sequential computation, the next input cannot be processed until the weights of all layers are updated from the last layer. This is known as backward locking. In this study, a weight parameter update mechanism is proposed with time delays that can accommodate the weight update delay to allow simultaneous forward and backward computation. To this end, a one-dimensional systolic array structure was designed on a Xilinx U50 Alveo FPGA card in which each layer of the MLP is assigned to a processing element (PE). The time-delay backpropagation algorithm executes all layers in parallel, and transfers data between layers in a pipeline. Compared to the Intel Core i9 CPU and NVIDIA RTX 3090 GPU, it is 3 times faster than the CPU and 2.5 times faster than the GPU. The processing speed per power consumption is 11.5 times better than that of the CPU and 21.4 times better than that of the GPU. From these results, it is concluded that a training accelerator on an FPGA can achieve high speed and energy efficiency.

  • Boosting the Performance of Interconnection Networks by Selective Data Compression

    Naoya NIWA  Hideharu AMANO  Michihiro KOIBUCHI  

     
    PAPER

      Pubricized:
    2022/07/12
      Vol:
    E105-D No:12
      Page(s):
    2057-2065

    This study presents a selective data-compression interconnection network to boost its performance. Data compression virtually increases the effective network bandwidth. One drawback of data compression is a long latency to perform (de-)compression operation at a compute node. In terms of the communication latency, we explore the trade-off between the compression latency overhead and the reduced injection latency by shortening the packet length by compression algorithms. As a result, we present to selectively apply a compression technique to a packet. We perform a compression operation to long packets and it is also taken when network congestion is detected at a source compute node. Through a cycle-accurate network simulation, the selective compression method using the above compression algorithms improves by up to 39% the network throughput with a moderate increase in the communication latency of short packets.

  • Model-Agnostic Multi-Domain Learning with Domain-Specific Adapters for Action Recognition

    Kazuki OMI  Jun KIMATA  Toru TAMAKI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/09/15
      Vol:
    E105-D No:12
      Page(s):
    2119-2126

    In this paper, we propose a multi-domain learning model for action recognition. The proposed method inserts domain-specific adapters between layers of domain-independent layers of a backbone network. Unlike a multi-head network that switches classification heads only, our model switches not only the heads, but also the adapters for facilitating to learn feature representations universal to multiple domains. Unlike prior works, the proposed method is model-agnostic and doesn't assume model structures unlike prior works. Experimental results on three popular action recognition datasets (HMDB51, UCF101, and Kinetics-400) demonstrate that the proposed method is more effective than a multi-head architecture and more efficient than separately training models for each domain.

  • Deep Learning-Based Massive MIMO CSI Acquisition for 5G Evolution and 6G

    Xin WANG  Xiaolin HOU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/06/15
      Vol:
    E105-B No:12
      Page(s):
    1559-1568

    Channel state information (CSI) acquisition at the transmitter side is a major challenge in massive MIMO systems for enabling high-efficiency transmissions. To address this issue, various CSI feedback schemes have been proposed, including limited feedback schemes with codebook-based vector quantization and explicit channel matrix feedback. Owing to the limitations of feedback channel capacity, a common issue in these schemes is the efficient representation of the CSI with a limited number of bits at the receiver side, and its accurate reconstruction based on the feedback bits from the receiver at the transmitter side. Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6%-26% compared with DL-based receivers and 33%-58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.

  • SDNRCFII: An SDN-Based Reliable Communication Framework for Industrial Internet

    Hequn LI  Die LIU  Jiaxi LU  Hai ZHAO  Jiuqiang XU  

     
    PAPER-Network

      Pubricized:
    2022/05/26
      Vol:
    E105-B No:12
      Page(s):
    1508-1518

    Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.

641-660hit(21534hit)