The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

9821-9840hit(21534hit)

  • Precoder for Chip-Interleaved CDMA Using Space-Time Block-Coding

    Yuji KIMURA  Koji SHIBATA  Takakazu SAKAI  

     
    LETTER-Spectrum Technologies

      Vol:
    E91-A No:10
      Page(s):
    2885-2888

    We study the performances of a synchronous chip-interleaved, block spread (CIBS) code division multiple access (CDMA) with space-time block-coding (STBC) in the presence of frequency-selective fading. For providing the space diversity gain due to STBC, we introduce the optimum precoding for the STBC. Zero-forcing and minimum mean square error equalizers for CIBS-CDMA are derived. Simulation results confirm that the proposed precoder is valid under the frequency selective fading.

  • Observation of Blue-Light Emission from Tantalum Oxide Films Deposited by Radio-Frequency Magnetron Sputtering

    Kenta MIURA  Hiroki MIYAZAKI  Osamu HANAIZUMI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1669-1672

    We obtained blue photoluminescence from tantalum oxide films deposited by radio-frequency magnetron sputtering after annealing. The maximum peak intensity of the photoluminescence was observed from a sample annealed at 600 for 20 min, and the peak wavelength was approximately 430 nm. Tantalum oxide films that emit blue light may be useful materials for novel active optical devices utilizing Ta2O5/SiO2 multilayered photonic crystals.

  • Research on Channel Quantization Algorithm of Time Correlated Channels

    Zhenjie FENG  Taiyi ZHANG  Erlin ZENG  

     
    LETTER-Digital Signal Processing

      Vol:
    E91-A No:10
      Page(s):
    3063-3066

    Focusing on time correlation of real communication channels, a channel quantization algorithm based on finite state vector quantization (FSVQ) is proposed. Firstly channels are partitioned into finite states, then codebooks corresponding to each state are constructed, which are used to quantize channels transferred from corresponding states. Further, the state transition function is designed to ensure the synchronization between transmitter and receiver. The proposed algorithm can achieve improved performance with the same feedback load compared with classical memoryless channel quantizer without consideration of the influence of time correlation. Simulation results verify the effectiveness of the proposed algorithm.

  • Outage Probability of Cooperative Relay in Rayleigh Fading with Unequal-Power Rayleigh Interferers

    Qinghai YANG  Kyung Sup KWAK  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3360-3363

    In this letter, we investigate the outage performance for decode-and-forward relaying under Rayleigh fading in the presence of multiple unequal-powered Rayleigh co-channel interferers. A close-form expression for the outage probability is derived and simulation results verify the theoretical solution.

  • Recursive Computation of Static Output Feedback Stochastic Nash Games for Weakly-Coupled Large-Scale Systems

    Muneomi SAGARA  Hiroaki MUKAIDANI  Toru YAMAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3022-3029

    This paper discusses the infinite horizon static output feedback stochastic Nash games involving state-dependent noise in weakly coupled large-scale systems. In order to construct the strategy, the conditions for the existence of equilibria have been derived from the solutions of the sets of cross-coupled stochastic algebraic Riccati equations (CSAREs). After establishing the asymptotic structure along with the positive semidefiniteness for the solutions of CSAREs, recursive algorithm for solving CSAREs is derived. As a result, it is shown that the proposed algorithm attains the reduced-order computations and the reduction of the CPU time. As another important contribution, the uniqueness of the strategy set is proved for the sufficiently small parameter ε. Finally, in order to demonstrate the efficiency of the proposed algorithm, numerical example is given.

  • Gramian-Preserving Frequency Transformation for Linear Discrete-Time State-Space Systems

    Shunsuke KOSHITA  Satoru TANAKA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3014-3021

    This paper proposes the Gramian-preserving frequency transformation for linear discrete-time state-space systems. In this frequency transformation, we replace each delay element of a discrete-time system with an allpass system that has a balanced realization. This approach can generate transformed systems that have the same controllability/observability Gramians as those of the original system. From this result, we show that the Gramian-preserving frequency transformation gives us transformed systems with different magnitude characteristics, but with the same structural property with respect to the Gramians as that of the original system. This paper also presents a simple method for realization of the Gramian-preserving frequency transformation. This method makes use of the cascaded normalized lattice structure of allpass systems.

  • S3: Smart Session Selection for Voice Communications in Next Generation Wireless Network

    Tein-Yaw CHUNG  Fong-Ching YUAN  Yung-Mu CHEN  Baw-Jhiune LIU  

     
    PAPER-Mobile Mulimedia Communication

      Vol:
    E91-A No:10
      Page(s):
    2995-3002

    Selecting transparently a proper network connection for voice communication will be a fundamental requirement in future multi-mode heterogeneous wireless network. This paper presented a smart session selection (S3) scheme to meet this requirement. Instead of selecting a best access network as in conventional Always Best Connected (ABC) paradigm, S3 enables users to select a best network connection, which consists of source and destination access network pair, to satisfy quality constraint and users' preference. To support S3, we develop a user profile to specify network connection priority. Meanwhile IP multimedia subsystem (IMS) is extended to make smart decision for users. Finally, Analytic Hierarchy Process (AHP) is used to recommend a network connection with assistance of user profile and IMS signaling. An example is illustrated to show that AHP can successfully select a good network connection that fulfills the requirement of users.

  • Performance Analysis of Transmit Diversity Systems with Multiple Antenna Replacement

    Ki-Hong PARK  Hong-Chuan YANG  Young-Chai KO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3281-3287

    Transmit diversity systems based on orthogonal space-time block coding (OSTBC) usually suffer from rate loss and power spreading. Proper antenna selection scheme can help to more effectively utilize the transmit antennas and transmission power in such systems. In this paper, we propose a new antenna selection scheme for such systems based on the idea of antenna switching. In particular, targeting at reducing the number of pilot channels and RF chains, the transmitter now replaces the antennas with the lowest received SNR with unused ones if the output SNR of space time decoder at the receiver is below a certain threshold. With this new scheme, not only the number of pilot channels and RF chains to be implemented is decreased, the average amount of feedback information is also reduced. To analyze the performance of this scheme, we derive the exact integral closed form for the probability density function (PDF) of the received SNR. We show through numerical examples that the proposed scheme offers better performance than traditional OSTBC systems using all available transmitting antennas, with a small amount of feedback information. We also examine the effect of different antenna configuration and feedback delay.

  • QR-LRL Signal Detection for Spatially Multiplexed MIMO Systems

    Seungjae BAHNG  Youn-Ok PARK  Jaekwon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3383-3386

    The performance of the ordered successive interference cancellation (OSIC) signal detection method is well known to depend on the successful detection of the first layer. In a previous work, in an effort to mitigate the error propagation effect, all the constellation points were tried as the first layer symbol, thereby achieving a better performance. In this letter, we show that the selection of the first layer impacts the error performance significantly, and based on the observation, we propose a novel signal detection method QR-LRL. In the proposed work, the least reliable layer (LRL) is chosen to be the first layer, which is shown to be the best choice in terms of noise enhancement in detecting the other layers. Also, we discuss Log Likelihood Ratio (LLR) computation when the proposed method is used. Computer simulations confirm the efficacy of the proposed method.

  • Security of a Class of Knapsack Public-Key Cryptosystems against Low-Density Attack

    Takeshi NASAKO  Yasuyuki MURAKAMI  Masao KASAHARA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2889-2892

    In 2003, Kobayashi et al. proposed a new class of knapsack public-key cryptosystems over Gaussian integer ring. This scheme using two-sequences as the public key. In 2005, Sakamoto and Hayashi proposed an improved version of Kobayashi's scheme. In this paper, we propose the knapsack PKC using l-sequences as the public key and present the low-density attack on it. We have described Schemes R and G for l=2, in which the public keys are constructed over rational integer ring and over Gaussian integer ring, respectively. We discusses on the difference of the security against the low-density attack. We show that the security levels of Schemes R and G differ only slightly.

  • Internal Antenna for Digital Video Broadcasting-Handheld (DVB-H) Application

    Yeonsik YU  Jeongpyo KIM  Jaehoon CHOI  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:10
      Page(s):
    3399-3403

    An internal antenna with a system ground for digital video broadcasting-handheld (DVB-H) service is proposed. The proposed antenna consists of a main patch with a two-step slit, two additional elements, and a system ground. The antenna has a small volume, 36 mm 11 mm 6 mm, and an average gain of -2.22 dBi to -0.06 dBi over the DVB-H band.

  • Theoretical Analysis of Bit Error Probability for 4-State Convolutional Code with Max-Log MAP Decoding

    Hideki YOSHIKAWA  

     
    LETTER-Coding Theory

      Vol:
    E91-A No:10
      Page(s):
    2877-2880

    In this letter, a theoretical analysis of bit error probability for 4-state convolutional code with Max-Log-maximum a posteriori probability (MAP) decoding is presented. This technique employs an iterative calculation of probability density function of the state metric per one transition, and gives the exact bit error probability for all signal-to-noise power ratio.

  • Eigenpolarization States of Photoinduced Anisotropy in Azobenzene Film

    Daisuke BARADA  Kiyonobu TAMURA  Takashi FUKUDA  Akira EMOTO  Toyohiko YATAGAI  

     
    LETTER

      Vol:
    E91-C No:10
      Page(s):
    1675-1676

    Optical anisotropy was induced in azobenzene copolymer film using linearly or elliptically polarized laser beams. The Jones matrix of the anisotropic film was calculated from the change in polarization of the probe light. Two eigenpolarization states were obtained from the matrix. These two eigenstates are useful as a polarization basis for a polarization-tunable component.

  • High-Rate Oblique Deposition of SiO2 Films Using Two Sputtering Sources

    Yoichi HOSHI  Kensuke YAGI  Eisuke SUZUKI  Hao LEI  Akira SAKAI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1644-1648

    In this paper, we proposed a new high-rate oblique deposition method using two sputtering sources to obtain SiO2 films for a liquid crystal alignment layer. One sputtering source that operates in a metal mode supplies Si atoms to a substrate, and the other source that operates in an oxide mode supplies oxygen radicals to a substrate. To reduce the gas pressure of a deposition chamber and make the two sputtering sources operate in different modes, the sputtering sources were separated from the deposition chamber with stainless meshes, and Ar and oxygen gases were introduced separately through the two sputtering sources, i.e., Ar gas was introduced through the Si supply source and oxygen gas was introduced through the oxygen radical source. When Ar gas of 30 sccm and oxygen gas of 4 sccm were introduced into the system, the gas pressure of the deposition chamber was maintained below 1.7 mTorr and the films deposited at an incidence angle of more than 70 showed an elongated inclined columnar structure. Under this condition, a deposition rate of 30 nm/min was realized even at an incidence angle above 70, where most of the Si atoms incident to the substrate were supplied by the Si supply source and the oxygen radical source supplied oxygen radicals and promoted the oxidation of the film.

  • StegErmelc: A Novel DCT-Based Steganographic Method Using Three Strategies

    KokSheik WONG  Kiyoshi TANAKA  

     
    PAPER-Image Security

      Vol:
    E91-A No:10
      Page(s):
    2897-2908

    This paper proposes a DCT-based steganographic method named StegErmelc in the JPEG domain. Three strategies are proposed, namely (i) edge-like block selection, (ii) recursive matrix encoding, and (iii) largest coefficient serving, to form a novel steganographic method for achieving scalable carrier capacity, low detectability by universal blind steganalyzer, and high image quality, simultaneously. For a given message length, StegErmelc flexibly scales its carrier capacity to accommodate the message while trading off with stego detectability. At full capacity, StegErmelc has comparable carrier capacity relative to the existing methods. When embedding the same amount of information, StegErmelc remarkably reduces the stego detection rate to about 0.3-0.5 lower than that of the existing methods considered, and consequently StegErmelc can withstand blind steganalyzer when embedding up to 0.10 bpc. Under the same condition, StegErmelc produces stego image with quality higher than that of the existing methods considered. Graphical comparison with three additional evaluation metrics is also presented to show the relative performance of StegErmelc with respect to the existing methods considered.

  • Maximizing Total QoS-Provisioning of Image Streams with Limited Energy Budget

    Wan Yeon LEE  Kyong Hoon KIM  Young Woong KO  

     
    PAPER

      Vol:
    E91-B No:10
      Page(s):
    3060-3068

    To fully utilize the limited battery energy of mobile electronic devices, we propose an adaptive adjustment method of processing quality for multiple image stream tasks running with widely varying execution times. This adjustment method completes the worst-case executions of the tasks with a given budget of energy, and maximizes the total reward value of processing quality obtained during their executions by exploiting the probability distribution of task execution times. The proposed method derives the maximum reward value for the tasks being executable with arbitrary processing quality, and near maximum value for the tasks being executable with a finite number of processing qualities. Our evaluation on a prototype system shows that the proposed method achieves larger reward values, by up to 57%, than the previous method.

  • Thermal-Aware Test Access Mechanism and Wrapper Design Optimization for System-on-Chips

    Thomas Edison YU  Tomokazu YONEDA  Krishnendu CHAKRABARTY  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:10
      Page(s):
    2440-2448

    Rapid advances in semiconductor manufacturing technology have led to higher chip power densities, which places greater emphasis on packaging and temperature control during testing. For system-on-chips, peak power-based scheduling algorithms have been used to optimize tests under specified power constraints. However, imposing power constraints does not always solve the problem of overheating due to the non-uniform distribution of power across the chip. This paper presents a TAM/Wrapper co-design methodology for system-on-chips that ensures thermal safety while still optimizing the test schedule. The method combines a simplified thermal-cost model with a traditional bin-packing algorithm to minimize test time while satisfying temperature constraints. Furthermore, for temperature checking, thermal simulation is done using cycle-accurate power profiles for more realistic results. Experiments show that even a minimal sacrifice in test time can yield a considerable decrease in test temperature as well as the possibility of further lowering temperatures beyond those achieved using traditional power-based test scheduling.

  • Schedulability Analysis of Periodic and Sporadic Tasks Using a Timed Discrete Event Model with Memorable Events

    Jung-Min YANG  Seong-Jin PARK  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3076-3079

    In a real-time system, when the execution of a task is preempted by another task, the interrupted task falls into a blocked state. Since its re-execution begins from the interrupted point generally, the task's timer containing the remaining time until its completion should be maintained in the blocked state. This is the reason for introducing the notion of memorable events in this paper. We present a new timed discrete event model (TDEM) that adds the memorable events to the TDEM framework of Brandin and Wonham (1994). Using supervisory control theory upon the proposed TDEM, we analyze the schedulability of preemptable periodic and sporadic tasks executing on a uniprocessor.

  • Analysis of a Multi-Oscillated Current Resonant Type DC-DC Converter

    Osamu MATSUO  Hirofumi MATSUO  Yoichi ISHIZUKA  Hiroyuki OTA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E91-B No:10
      Page(s):
    3307-3312

    This paper presents the analysis of a new multi-oscillated current resonant type DC-DC converter. Current resonant converters have several remarkable features such as high efficiency, small size, low cost and low noise, and are frequently employed in many portable electronic systems such as personal computers, cellular phones and flat panel displays. The current resonant type converter generally employs pulse frequency modulation for constant voltage control in the output. For this reason, the magnetizing current through the converter not only causes a power loss under a light load, but also a loss during stand-by. Therefore, this type of converter has a problem in that the required smaller size cannot be achieved, because an auxiliary source is necessary for stand-by. In order to solve these problems, a new current resonant type power supply is proposed in which two driving methods are employed. In these driving methods, one MOSFET as a main switch is driven by an auxiliary winding of the transformer and another MOSFET as a main switch is driven by the driving IC with a low withstand voltage. Good agreement of the observed and simulated waveforms was confirmed. In addition, eight distinct states and four distinct operating modes, which compose of the sequence of states, were clarified by experimental and simulated analysis.

  • Predictive Closed-Loop Power Control for CDMA Cellular Networks

    Sangho CHOE  Murat UYSAL  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3272-3280

    In this paper, we present and analyze a predictive closed-loop power control (CLPC) scheme which employs a comb-type sample arrangement to effectively compensate multiple power control group (PCG) delays over mobile fading channels. We consider both least squares and recursive least squares filters in our CLPC scheme. The effects of channel estimation error, prediction filter error, and power control bit transmission error on the performance of the proposed CLPC method along with competing non-predictive and predictive CLPC schemes are thoroughly investigated. Our results clearly indicate the superiority of the proposed scheme with its improved robustness under non-ideal conditions. Furthermore, we carry out a Monte-Carlo simulation study of a 55 square grid cellular network and evaluate the user capacity. Capacity improvements up to 90% are observed for a typical cellular network scenario.

9821-9840hit(21534hit)