The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] TE(21534hit)

15821-15840hit(21534hit)

  • Methods for Estimating the Ocean Wavelength in Satellite Altimetry

    Kiyotaka FUJISAKI  Shizu TATSUMOTO  Mitsuo TATEIBA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1841-1847

    This paper presents methods for estimating the ocean wavelength in satellite altimetry and discusses the possibility of detecting the ocean wavelength. Numerical analyses show that there exists a relation between the significant wavelength and the pulse-to-pulse correlation coefficient. Presented methods are based on processing the data of existing satellite altimeters. Accordingly, we will be able to propose a method for measuring the wavelength without a large change in existing altimetry system.

  • Placement of VBR Video on Zoned Disks for Real-Time Playback

    Shiao-Li TSAO  Meng Chang CHEN  Yeali Sunny SUN  

     
    PAPER-Databases

      Vol:
    E84-D No:12
      Page(s):
    1767-1781

    Disk-zoning technique has been widely adopted to increase disks capacities. As a result of disparity of capacities of inner and outer zones, the data transfer rates of the outer zones of a zoned-disk are higher than the inner zones that post a great challenge for zoned-disk based multimedia playback. In this paper, we study the data placement problem of VBR (variable bit rate) videos on zoned-disks. Our objective is to minimize video server buffer size and simultaneously to maximize disk utilization subject to the zone constraints of disk. We introduce the CRT (constant read time) method that allocates each user a constant time period in every service round to retrieve a variable-sized disk block. The CRT method can be formulated as constrained combinatorial problems that its optimum solution can be obtained by employing dynamic programming. Two heuristics are also explored to reduce time and space complexities. According to experiment results, the heuristic algorithms obtain near optimum solutions with shorter computation time.

  • A Random Walk through Eigenspace

    Matthew TURK  

     
    INVITED PAPER

      Vol:
    E84-D No:12
      Page(s):
    1586-1595

    It has been over a decade since the "Eigenfaces" approach to automatic face recognition, and other appearance-based methods, made an impression on the computer vision research community and helped spur interest in vision systems being used to support biometrics and human-computer interface. In this paper I give a personal view of the original motivation for the work, some of the strengths and limitation of the approach, and progress in the years since. Appearance-based approaches to recognition complement feature- or shape-based approaches, and a practical face recognition system should have elements of both. Eigenfaces is not a general approach to recognition, but rather one tool out of many to be applied and evaluated in the appropriate context.

  • A System for Efficiently Self-Reconstructing 1(1/2)-Track Switch Torus Arrays

    Tadayoshi HORITA  Itsuo TAKANAMI  

     
    PAPER-Fault Tolerance

      Vol:
    E84-D No:12
      Page(s):
    1801-1809

    A mesh-connected processor array consists of many similar processing elements (PEs), which can be executed in both parallel and pipeline processing. For the implementation of an array of large numbers of processors, it is necessary to consider some fault tolerant issues to enhance the (fabrication-time) yield and the (run-time) reliability. In this paper, we introduce the 1(1/2)-track switch torus array by changing the connections in 1(1/2)-track switch mesh array, and we apply our approximate reconfiguration algorithm to the torus array. We describe the reconfiguration strategy for the 1(1/2)-track switch torus array and its realization using WSI, especially 3-dimensional realization. A hardware realization of the algorithm is proposed and simulation results about the array reliability are shown. These imply that a self-reconfigurable system with no host computer can be realized using our method, hence our method is effective in enhancing the run-time reliability as well as the fabrication-time yield of processor arrays.

  • High Sensitivity Radar-Optical Observations of Faint Meteors

    Koji NISHIMURA  Toru SATO  Takuji NAKAMURA  Masayoshi UEDA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1877-1884

    In order to assess the possible impacts of meteors with spacecraft, which is among major hazard in the space environment, it is essential to establish an accurate statistics of their mass and velocity. We developed a radar-optical combined system for detecting faint meteors consisting of a powerful VHF Doppler radar and an ICCD video camera. The Doppler pulse compression scheme is used to enhance the S/N ratio of the radar echoes with very large Doppler shifts, as well as to determine their range with a resolution of 200 m. A very high sensitivity of more than 14 magnitude and 9 magnitude for radar and optical sensors, respectively, has been obtained. Instantaneous direction of meteor body observed by the radar is determined with the interferometry technique. We examined the optimum way of the receiving antenna arrangements, and also of the signal processing. Its absolute accuracy was confirmed by the optical observations with background stars as a reference. By combining the impinging velocity of meteor bodies derived by the radar with the absolute visual magnitude determined by the video camera simultaneously, the mass of each meteor body was estimated. The developed observation system will be used to create a valuable data base of the mass and velocity information of faint meteors, on which very little is known so far. The data base is expected to play a vital role in our understanding of the space environment needed for designing large space structures.

  • Complex-Valued Region-Based-Coupling Image Clustering Neural Networks for Interferometric Radar Image Processing

    Akira HIROSE  Motoi MINAMI  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1932-1938

    Complex-valued region-based-coupling image clustering (continuous soft segmentation) neural networks are proposed for interferometric radar image processing. They deal with the amplitude and phase information of radar data as a combined complex-amplitude image. Thereby, not only the reflectance but also the distance (optical length) are consistently taken into account for the clustering process. A continuous complex-valued label is employed whose structure is the same as that of input raw data and estimation image. Experiments demonstrate successfully the clustering operations for interferometric synthetic aperture radar (InSAR) images. The method is applicable also to future radar systems for image acquisition in, e.g., invisible fire smoke places and intelligent transportation systems by generating a processed image more recognizable by human and automatic recognition machine.

  • An Adaptive Footprint Assembly (AFA) Method for the Reduction of Blurring in MIPmapped Texture Mapping

    Jong Hyun LEE  Kyu Ho PARK  

     
    LETTER-Computer Graphics

      Vol:
    E84-D No:12
      Page(s):
    1832-1835

    Footprint assembly was proposed to reduce the blurriness of texture mapped image by mipmapping. Even though it can improve the quality of texture mapped image, there are yet blurring due to the limitation of it's filter kernel. This paper proposes a novel texture filtering, called adaptive footprint assembly (AFA), to overcome the limitation of footprint assembly. The proposed method greatly improves the quality of texture mapped images.

  • Review of Viterbi's Model Estimating the Capacity of CDMA Based Mobile Systems

    Holger BOCHE  Enrico JUGL  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:12
      Page(s):
    3212-3217

    In this paper a different view on Viterbi's method for the estimation of the reverse link capacity of a single cell of CDMA based mobile communications systems is given. Viterbi's approach is well-known and of great importance for the capacity estimation. However, the interpretation of Viterbi's result on the system capacity is not that clear. Thus, we introduce a new approach giving accurate reasons for Viterbi's capacity estimation. When neglecting the noise power, both methods provide nearly the same result. We conclude that Viterbi's finding relates to the average capacity, which is an important statistical parameter. However, we should note that this average capacity will be not available all the time. The improvements discussed in this paper focus on the specification of a certain reliability about the availability of the average capacity.

  • Object Extraction from a Moving Background Using Velocity Estimation and Optimal Filter in the MixeD

    Shengli WU  Hideyuki SHINMURA  Nozomu HAMADA  

     
    PAPER-Digital Signal Processing

      Vol:
    E84-A No:12
      Page(s):
    3082-3089

    This paper addresses the problem to extract moving object from the moving background in the mixed domain (MixeD), which makes it possible to carry the filtering in one dimension. Since the velocities of moving object and background are necessary for moving object extraction, we first estimate the velocities based on the appropriate spatial frequency point selection method in the MixeD. Then an optimal filter used for 1-D signal filtering is designed. By filtering 1-D signals over all spatial frequencies, signals with certain velocity vector are extracted, while the extracted image is obtained by applying the 2-D IDFT to the filtered signals. The simulation results show that the method can extract moving object based both on the correctly estimated velocity and the proposed optimal 1-D filter.

  • Hybrid-Integrated Smart Pixels for Dense Optical Interconnects

    Hiroyuki TSUDA  Tatsushi NAKAHARA  Takashi KUROKAWA  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1771-1777

    The recent progress of the performance of a CMOS-LSI is rapid and continuous, and the required bandwidth for communication between chips will be enormous. Dense optical interconnects by smart pixels may be used to such an application because it would have enough bandwidth and short delay of signaling. On-chip and chip-to-chip optical interconnects and electrical interconnects were compared and the advantages of the use of optics were indicated. For on-chip communication, high-speed (70% of the velocity of the light) propagation of signals by optical interconnects are useful and it enables whole chip synchronization. The considerable reduction of power dissipation using optics was estimated for chip-to-chip interconnects. The effect of hybrid integration with small parasitic capacitance was simulated and the sensitivity improvement of more than 13 dB was expected. How to fabricate a smart pixel is the most difficult subject. We had successfully fabricated smart pixels with VCSELs and PDs using polyimide bonding technique. CW lasing of the VCSEL was observed and it proved that the polyimide bonding technique was useful to making smart pixels. The integrated receiver was also fabricated in the same manner. It showed a high sensitivity of -9.2 dBm for a bit-rate of 622 Mbit/s. High-performance characteristics of the receiver resulted from the low parasitic integration with polyimide bonding technique.

  • Ka-Band LMS Channel Model with Rain Attenuation and Other Atmospheric Impairments in Equatorial Zone

    Wenzhen LI  Choi Look LAW  Jin Teong ONG  Vimal Kishore DUBEY  

     
    PAPER-Antenna and Propagation

      Vol:
    E84-B No:12
      Page(s):
    3265-3273

    In this paper, the statistical characteristics of rain attenuation in the equatorial zone are investigated. A more reasonable LMS channel model incorporating weather impairments is proposed and compared to the weather-affected Ka-band land mobile satellite (LMS) channel model suggested by Loo. The proposed LMS model uses Lutz's LMS channel model as its basis. The PDF of the received signal and BER performance derived from Loo's model and the proposed channel model are quantified and compared to verify the effectiveness of the proposed model. Finally, the influence of weather impairments on the BER performance is evaluated under various weather conditions, which clearly shows the superiority of the proposed model.

  • All-Optical Wavelength Conversion Using a Fabry-Perot Semiconductor Optical Amplifier

    Masumi SAITOH  Mitsuru TAKENAKA  Byongjin MA  Yoshiaki NAKANO  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E84-C No:12
      Page(s):
    1975-1978

    We describe a simple all-optical wavelength converter based on a Fabry-Perot semiconductor optical amplifier (FPSOA). We measure its static characteristics in detail and successfully demonstrate its dynamic wavelength-conversion operation (both inverted and non-inverted) at 2.5 Gbit/s. This is the first demonstration of FPSOA-based wavelength conversion. Quasi-digital response is also observed. Low input power, ease of fabrication and good compatibility with WDM networks are important advantages of FPSOA.

  • Experiments on Parallel-Type Coherent Multistage Interference Canceller with Iterative Channel Estimation for W-CDMA Mobile Radio

    Yoshihisa KISHIYAMA  Koichi OKAWA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E84-A No:12
      Page(s):
    3000-3011

    This paper investigates the interference suppression effect from much higher rate dedicated physical channels (DPCHs) of a parallel-type coherent multistage interference canceller (COMSIC) with iterative channel estimation (ICE) by laboratory experiments in the transmit-power-controlled W-CDMA reverse link. The experimental results elucidate that when two interfering DPCHs exist with the spreading factor (SF) of 8 and with the ratio of the target signal energy per bit-to-interference power spectrum density ratio (Eb/I0) of fast transmit power control, ΔEb/I0, of -6 dB (which corresponds to 64 simultaneous DPCHs with SF = 64, i.e., the same symbol rate as the desired DPCH), the implemented COMSIC receiver with ICE exhibits a significant decrease in the required transmit signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) at the average bit error rate (BER) of 10-3 (while the matched filter (MF)-based Rake receiver could not realize the average BER of 10-3 due to severe multiple access interference (MAI)). It is also found that the achieved BER performance at the average BER of 10-3 of the COMSIC receiver with the A/D converter quantization of 8 bits in the laboratory experiments is degraded by approximately 1.0 dB and 4.0 dB compared to the computer simulation results, when ΔEb/I0=-6 dB and -9 dB, respectively, due to the quantization error of the desired signal and path search error for the Rake combiner. Finally, we show that the required transmit Eb/N0 at the average BER of 10-3 of the third-stage COMSIC with ICE is decreased by approximately 0.3 and 0.5 dB compared to that of COMSIC with decision-feedback type channel estimation (DFCE) with and without antenna diversity reception, respectively.

  • A Multi-Resolution Image Understanding System Based on Multi-Agent Architecture for High-Resolution Images

    Keiji YANAI  Koichiro DEGUCHI  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1642-1650

    Recently a high-resolution image that has more than one million pixels is available easily. However, such an image requires much processing time and memory for an image understanding system. In this paper, we propose an integrated image understanding system of multi-resolution analysis and multi-agent-based architecture for high-resolution images. The system we propose in this paper has capability to treat with a high-resolution image effectively without much extra cost. We implemented an experimental system for images of indoor scenes.

  • Proposal of an Adaptive Vision-Based Interactional Intention Inference System in Human/Robot Coexistence

    Minh Anh Thi HO  Yoji YAMADA  Takayuki SAKAI  Tetsuya MORIZONO  Yoji UMETANI  

     
    PAPER

      Vol:
    E84-D No:12
      Page(s):
    1596-1602

    The paper proposes a vision-based system for adaptively inferring the interactional intention of a person coming close to a robot, which plays an important role in the succeeding stage of human/robot cooperative handling of works/tools in production lines. Here, interactional intention is ranged in the meaning of the intention to interact/operate with the robot, which is proposed to be estimated by the human head moving path during an incipient period of time. To implement this intention inference capability, first, human entrance is detected and is modeled by an ellipse to supply information about the head position. Second, B-spline technique is used to approximate the trajectory with reduced control points in order that the system acquires information about the human motion direction and the curvature of the motion trajectory. Finally, Hidden Markov Models (HMMs) are applied as the adaptive inference engines at the stage of inferring the human interactional intention. The HMM algorithm with a stochastic pattern matching capability is extended to supply whether or not a person has an intention toward the robot at the incipient time. The reestimation process here models the motion behavior of an human worker when he has or doesn't have the intention to operate the robot. Experimental results demonstrate the adaptability of the inference system using the extended HMM algorithm for filtering out motion deviation over the trajectory.

  • A Hierarchical Classifier for Multispectral Satellite Imagery

    Abdesselam BOUZERDOUM  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1952-1958

    In this article, a hierarchical classifier is proposed for classification of ground-cover types of a satellite image of Kangaroo Island, South Australia. The image contains seven ground-cover types, which are categorized into three groups using principal component analysis. The first group contains clouds only, the second consists of sea and cloud shadow over land, and the third contains land and three types of forest. The sea and shadow over land classes are classified with 99% accuracy using a network of threshold logic units. The land and forest classes are classified by multilayer perceptrons (MLPs) using texture features and intensity values. The average performance achieved by six trained MLPs is 91%. In order to improve the classification accuracy even further, the outputs of the six MLPs were combined using several committee machines. All committee machines achieved significant improvement in performance over the multilayer perceptron classifiers, with the best machine achieving over 92% correct classification.

  • JavaTM Call Control (JCC) and Session Initiation Protocol (SIP)

    Ravi JAIN  John-Luc BAKKER  Farooq ANJUM  

     
    INVITED PAPER

      Vol:
    E84-B No:12
      Page(s):
    3096-3103

    This paper describes the JAINTM JavaTM Call Control (JCC) Application Programming Interface (API), and its relationship to network protocols, in particular the Session Initiation Protocol (SIP). JCC is a high-level object-oriented open, standard API for Next Generation Network (NGN) softswitches that enables rapid creation, by third parties, of services that can run independently of the underlying network technology (e.g. wireless, wired, packet, IP, PSTN) and protocols. SIP is a protocol that has been proposed for a wide variety of uses in IP networks, including call control. We argue that instead of being competitors, JCC and SIP are complementary, with JCC offering higher-layer programming abstractions and protocol-independence, and demonstrate by examples how to map JCC version 1.0 to a SIP environment. We thus show that for common call control applications using JCC is simpler, faster and less maintenance intensive than using SIP directly.

  • Interconnection of Stacked Layers by Bumpless Wiring in Wafer-Level Three-Dimensional Device

    Akinobu SATOH  

     
    PAPER

      Vol:
    E84-C No:12
      Page(s):
    1746-1755

    This paper describes the wafer-level, three-dimensional packaging for MEMS in which sensors, actuators, electronic circuits and other functions are combined together in one integrated block. Si wafers with built-in MEMS functions were integrated with no change in thickness to ensure mechanical strength and improve heat dissipation. In the entire process of three-dimensional integration, Si wafers were processed at temperatures below 400C to prevent degradation of their built-in functions. A description is made of the low-temperature oxidation technology developed by us, which makes through-holes of high density and high aspect ratio in Si wafers with built-in functions by the Optical Excitation Electropolishing Method (OEEM) and forms an oxide film on the hole walls simply by replacing electrolyte. Next, a description is presented of the bumpless interconnection method which fills through-holes of stacked layers with metal by the molten metal suction method and of the electrocapillary effect as a countermeasure to prevent the filler metal from dropping out of holes under its own weight.

  • Reliable Data Routing for Spatial-Temporal TMR Multiprocessor Systems

    Mineo KANEKO  

     
    PAPER-Fault Tolerance

      Vol:
    E84-D No:12
      Page(s):
    1790-1800

    This paper treats the data routing problem for fault-tolerant systolic arrays based on Triple Modular Redundancy (TMR) in mixed spatial-temporal domain. The number of logical links required in TMR systolic array is basically 9 times larger than the one for corresponding non-fault-tolerant systolic array. The link sharing is a promising method for reducing the number of physical links, which may, however, degrade the fault tolerance of TMR system. This paper proposes several robust data-routing and resource-sharing (plural data transfers share a physical link, or a data transfer and a computational task share a PE as a relay node for the former and as a processor for the latter), by which certain classes of fault tolerant property will be guaranteed. A stage and a dominated set are introduced to characterize the features of routing/resource-sharing in TMR systems, and conditions on the dominated set and their resultant fault-tolerant properties are derived.

  • Improved Topographic Correction for Satellite Imagery

    Feng CHEN  Ken-ichiro MURAMOTO  Mamoro KUBO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E84-D No:12
      Page(s):
    1820-1827

    An improved algorithm is developed for correcting the topographic impact on satellite imagery. First, we analyze the topography induced distortion on satellite image. It is shown that the variation of aspect can cause the obvious different distortions in the remotely sensed image, and also effect the image illumination significantly. Because the illumination is the basis for topographic correction algorithms, we consider its variation in different sun-facing aspects in calculation a correction parameter and take it as a key element in the modified correction algorithm. Then, we apply the modified correction method on the actual Landsat Thematic Mapper satellite image. The topographic correction was done in different image data with different season and different solar angle. The corrected results show the effectiveness and accuracy using this approach.

15821-15840hit(21534hit)