The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

26861-26880hit(30728hit)

  • A Single-Layer Linear-to-Circular Polarization Converter for a Narrow-Wall Slotted Waveguide Array

    Kyeong-Sik MIN  Jiro HIROKAWA  Kimio SAKURAI  Makoto ANDO  Naohisa GOTO  Yasuhiko HARA  

     
    PAPER-Antennas and Propagation

      Vol:
    E80-B No:8
      Page(s):
    1264-1272

    This paper describes the characteristics of a one dimensional narrow-wall slotted waveguide array with a single-layer linear-to-circular polarization converter consisting of a dipole array. An external boundary value problem of one slot and three dipoles, which approximates the mutual coupling between the dipole array and an edge slot extending over three faces of a rectangular waveguide, is formulated and analyzed by the method of moments; design of polarization conversion is conducted for this model as a unit element. If every unit element has perfect circular polarization, grating lobes appear in the array pattern due to the alternating slot angle: these are suppressed in this paper by changing the dipole angle and degrading the axial ratio of the unit element. The validity of the design is confirmed by the measurements. The dipole array has negligible effects upon slot impedance; the polarization conversion for existing narrow-wall slotted arrays is realized by add-on dipole array.

  • New DQPSK Simultaneous Carrier and Bit-Timing Recovery Coherent Demodulator for Wireless Broadband Communication Systems

    Yoichi MATSUMOTO  Takeyuki NAGURA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E80-B No:8
      Page(s):
    1145-1152

    This paper proposes a differentially-coded-quadrature-phase-shift-keying (DQPSK) coherent demodulator using a new simultaneous carrier and bit-timing recovery scheme (SCBR). The new DQPSK SCBR (DSCBR) scheme works with a frequently used preamble, whose baseband signal alternates between two diagonal decision points, for example, a repeated bit-series of "1001." With the DSCBR scheme, the proposed demodulator achieves a significantly agile carrier and bit-timing recovery using an open-loop approach with a one-part preamble. To illustrate this, a preamble of 8 symbols is applicable with the Eb/No degradation from the theory over AWGN of 0.2 dB. It is also shown that the proposed demodulator achieves an improvement in the required Eb/No of more than 2 dB over differential detection over Ricean fading communication channels. The channels are modeled for wireless broadband communication systems with directional antennas or line of sight (LOS) paths. This paper concludes that the proposed demodulator is a strong candidate for receivers in wireles broadband communication systems.

  • A Low Voltage High Speed Self-Timed CMOS Logic for the Multi-Gigabit Synchronous DRAM Application

    Hoi-Jun YOO  

     
    LETTER-Integrated Electronics

      Vol:
    E80-C No:8
      Page(s):
    1126-1128

    A low voltage dual VT self-timed CMOS logic in which the subthreshold leakage current path is blocked by a large high-VT MOS is proposed. An active signal at each node of the self-timed circuit resets its own voltage to its standby state after 4 inverter delays. This pulsed nature speeds up the signal propagation and enables the synchronous DRAM to adopt a fast pipelining scheme.

  • Digitalization of Mobile Communication Systems

    Heiichi YAMANOTO  

     
    INVITED PAPER

      Vol:
    E80-B No:8
      Page(s):
    1111-1117

    Recently, the number of users utilizing mobile communication services has increased greatly in many information and communication fields. In the future, the number of mobile communication system users will increase even faster, until the rate of diffusion ultimately reaches that of telephones. The day that each person has his own portable mobile terminal is not so far off. Moreover, the systems will not only be used as telephones but also as mobile computing for multimedia information. Digitalization technologies of mobile communication systems needed to realize such mobile computing will be introduced in this paper.

  • Mobile Computing Using Personal Handy-Phone System (PHS)

    Toshiaki TANAKA  Hideo MATSUKI  

     
    INVITED PAPER

      Vol:
    E80-B No:8
      Page(s):
    1118-1124

    Given the tremendous growth in the cellular phone system and the Personal Hadny-phone System (PHS), it is to be expected that demands for mobile computing using those wireless infrastructures, that is mobile computer access, will dramatically increase. This paper describes high-quality and high-speed data transmission technology for PHS mobile computing and current PHS data transmission standardization activities. Furthermore, wireless agent communication and a service example are presented together with the concept of background communication for the coming wireless multimedia services.

  • The Family of Parametric Projection Filters and Its Properties for Perturbation

    Hideyuki IMAI  Akira TANAKA  Masaaki MIYAKOSHI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:8
      Page(s):
    788-794

    A lot of optimum filters have been proposed for an image restoration problem. Parametric filter, such as Parametric Wiener Filter, Parametric Projection Filter, or Parametric Partial Projection Filter, is often used because it requires to calculate a generalized inverse of one operator. These optimum filters are formed by a degradation operator, a covariance operator of noise, and one of original images. In practice, these operators are estimated based on empirical knowledge. Unfortunately, it happens that such operators differ from the true ones. In this paper, we show the unified formulae of inducing them to clarify their common properties. Moreover, we investigate their properties for perturbation of a degradation operator, a covariance operator of noise, and one of original images. Some numerical examples follow to confirm that our description is valid.

  • The Number of Clique Boolean Functions

    Grant POGOSYAN  Masahiro MIYAKAWA  Akihiro NOZAKI  Ivo G. ROSENBERG  

     
    PAPER-Graphs and Networks

      Vol:
    E80-A No:8
      Page(s):
    1502-1507

    We give an explicit formula for the number of n-variable clique function in terms of the parameters based upon the numbers of intersecting antichains of the lower half of the n-cube. We present the numbers of clique functions with up to seven variables through computer evaluation of the parameters.

  • Microstructural Characterization and Photoluminescence of SrGa2S4:Ce3+ Thin Films Grown by Deposition from Binary Vapors

    Oleg DJAZOVSKI  Tomohisa MIKAMI  Koutoku OHMI  Shosaku TANAKA  Hiroshi KOBAYASHI  

     
    PAPER

      Vol:
    E80-C No:8
      Page(s):
    1101-1108

    Detailed investigations of the microstructural properties of SrGa2S4:Ce3+ thin films grown by deposition from binary vapors (DBV) were carried out by X-ray diffraction analysis (XRD), energy dispersive X-ray diffraction measurements (EDX), electron probe microanalysis (EPMA), and X-ray photoelectron spectroscopy (XPS) depth profiling. The results indicate uniform distribution of the constituent elements in the nearly stoichiometric structure of the thin films. Photoluminescence (PL) data including absorption and luminescence spectra in the temperature range of 10 to 300 K and decay characteristics show that an increase in Ce concentration from 0.2 to 3 mol% is accompanied with a marked increase in both the intensity of activator absorption and decay time, while the emission and excitation bands remain fixed in position. A mechanism involving the concentration-dependent interactions between different centers in the lattice is proposed, which may explain the experimentally observed behavior.

  • A Balanced-Mesh Clock Routing Technique for Performance Improvement

    Hidenori SATO  Hiroaki MATSUDA  Akira ONOZAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E80-A No:8
      Page(s):
    1489-1495

    This paper presents a clock routing technique called Balanced-Mesh Method (BMM) which incorporates the advantages of two famous conventional-clock-routing techniques. One is the balanced-tree method (BTM) where the clock net is routed as a tree so that the delay times of clock signal are balanced, and the other is the fixed-mesh method (FMM) where the clock net is routed as a fixed mesh driven by a large buffer. In BMM, the clock net is routed as a set of relatively small meshes of interconnects driven by relatively small buffers. Each mesh covers an area called a Mesh-Routing Region (MR) in which its delay and skew can be suppressed within a certain range. These small meshes are connected by a balanced tree with the chip clock source as its root. To implement BMM, we developed an MR-partitioning program that partitions the circuit into MR's according to a set of pre-determined constraints on the number of flip-flops and the area in each MR, and a clock-global-routing program that provides each mesh routing and the tree routing connecting meshes. We applied BMM to the design of an MPEG2-encoder LSI and achieved a skew of 210ps. In addition, the experimental results show BMM yields the lowest power dissipation compared to conventional methods.

  • Reliability Modeling of Declustered-Parity RAID Considering Uncorrectable Bit Errors

    Xuefeng WU  Jie LI  Hisao KAMEDA  

     
    PAPER-Reliability and Fault Analysis

      Vol:
    E80-A No:8
      Page(s):
    1508-1515

    UNcorrectable Bit Errors (UNBEs) are important in considering the reliability of Redundant Array of Inexpensive Disks (RAID). They, however, have been ignored or have not been studied in detail in existing reliability analysis of RAID. In this paper, we present an analytic model to study the reliability of declustered-parity RAID by considering UNBEs. By using the analytic model, the optimistic and the pessimistic estimates of the probability that data loss occurs due to an UNBE during the data reconstruction after a disk failed (we call this DB data loss) are obtained. Then, the optimistic and the pessimistic estimates of the Mean Time To Data Loss (MTTDL) that take into account both DB data loss and the data loss caused by double independent disk failures (we call this DD data loss) are obtained. Furthermore, how the MTTDL depends on the number of units in a parity stripe, rebuild time of a failed disk and write fraction of data access are studied by numerical analysis.

  • Performance Analysis of an Adaptive Query Processing Strategy for Mobile Databases

    Hajime SHIBATA  Masahiko TSUKAMOTO  Shojiro NISHIO  

     
    PAPER

      Vol:
    E80-B No:8
      Page(s):
    1208-1213

    Many network protocols for routing messages have been proposed for mobile computing environments. In this paper, we consider the query processing strategy which operates over these network protocols. To begin with, we introduce five fundamental location update methods based on ideas extracted from the representative network protocols. They are the single broadcast notification (SBN), the double broadcast notification (WBN), the single default notification (SDN), the double default notification (WDN), and the no notification (NN). As a network protocol, each method is strong in performance in some system enrivonment, but weak in others. In practical situations, where various kinds of applications are used for various purposes, however, it is required to use a single method. We therefore propose an adaptive query processing strategy where these five location update methods can be dynamically selected. Moreover, we analyze the performance of this adaptive query processing strategy via the Markov chain. We also use the statistical approach to estimate the traffic of individual hosts. Finally, we show the efficiency of our proposed strategy over a wide area of system environments.

  • Measuring Three-Dimensional Shapes of a Moving Human Face Using Photometric Stereo Method with Two Light Sources and Slit Patterns

    Hitoshi SAJI  Hiromasa NAKATANI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:8
      Page(s):
    795-801

    In this paper, a new method for measuring three-dimensional (3D) moving facial shapes is introduced. This method uses two light sources and a slit pattern projector. First, the normal vectors at points on a face are computed by the photometric stereo method with two light sources and a conventional video camera. Next, multiple light stripes are projected onto the face with a slit pattern projector. The 3D coordinates of the points on the stripes are measured using the stereo vision algorithm. The normal vectors are then integrated within 2D finite intervals around the measured points on the stripes. The 3D curved segment within each finite interval is computed by the integration. Finally, all the curved segments are blended into the complete facial shape using a family of exponential functions. By switching the light rays at high speed, the time required for sampling data can be reduced, and the 3D shape of a moving human face at each instant can be measured.

  • Design of Two-Dimensional Periodically Time-Variant Digital Filters

    Toshiyuki YOSHIDA  Shin'ichi NISHIZONO  Yoshinori SAKAI  

     
    PAPER

      Vol:
    E80-A No:8
      Page(s):
    1453-1459

    This paper discusses a design method for two-dimensional (2-D) periodically time-variant digital filters (PTVDFs) whose filter coefficients vary periodically. First, 2-D periodicities for a variation of filter cefficients are considered, from which two and four-phase variations of coefficients are shown to be suitable for practical applications. Then, the input-output relation (transfer function) for 2-D separable-denominator (SD) PTV DFs is derived, which results in a linear combination of the baseband input signal and its modulated versions. Finally, in order ro approximate given filter specifications, the structure for 2-D SD PTV DFs is given and a design method is proposed. It is shown that, compared with the 2-D SD time-invariant DFs, approximation error can be reduced with the proposed SD PTV DFs.

  • Multiresolution Model Construction from Scattered Range Data by Hierarchical Cube-Based Segmentation

    Shengjin WANG  Makoto SATO  Hiroshi KAWARADA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:8
      Page(s):
    780-787

    High-speed display of 3-D objects in virtual reality environments is one of the currently important subjects. Shape simplification is considered an efficient method. This paper presents a method of hierarchical cube-based segmentation for shape simplification and multiresolution model construction. The relations among shape simplification, resolution and visual distance are derived firstly. The first level model is generated from scattered range data by cube-base segmentation with the first level cube size. Multiresolution models are then generated by re-sampling polygonal patch vertices of each former level model with hierarchical cube-based segmentation structure. The results show that the algorithm is efficient for constructing multiresolution models of free-form shape 3-D objects from scattered range data and high compression ratio can be obtained with little noticeable difference during the visualization.

  • Performance Evaluation of DS/CDMA Hybrid Acquisition in Multipath Rayleigh Fading Channel

    Bub-Joo KANG  

     
    PAPER-Radio Communication

      Vol:
    E80-B No:8
      Page(s):
    1255-1263

    In this paper, the evaluation of a hybrid acquisition performance has been considered for the pilot signal in direct sequence code division multiple access (DS/CDMA) forward link. The hybrid acquisition is introduced by the combination of two schemes, parallel and serial acquisitions. The mean acquisition time of the hybrid acquisition scheme is derived to consider both case 1 (the correct code-phase offsets ae included in one subset) and case 2 (the correct code-phase offsets exist at the boundary of two subsets), which are caused by the distribution of the correct code-phase offsets between two subsets. Detection, false alarm, and miss probabilities are derived for the cases of multiple correct code-phase offsets and multipath Rayleigh fading channel. Results are provided for the acquisition performance with respect to system design parameters such as postdetection integration length in the search and verification modes, subset size, and number of I/Q noncoherent correlators. Also, comparision between hybrid acquisition and parallel acquisition under the same hardware complexity is provided in terms of the minimum mean acquisition time.

  • Parameter Estimation and Restoration for Motion Blurred Images

    Qiang LI  Yasuo YOSHIDA  

     
    PAPER

      Vol:
    E80-A No:8
      Page(s):
    1430-1437

    The parameter estimation problem of point spread function is one of the most challenging and important task for image restoration. A new method for the parameter estimation in the case of motion blur is presented here. It is based on the principle that the power spectrum of the motion blurred image contains periodical minima relevant directly to the motion derection and length. Though the principle is very simple and effective in certain cases, the direct use of it may lead to poor performance an the signal-to-noise ratio (SNR) gets lower. To improve the estimation accuracy, by analyzing image noise effect on the detection of the minima, we propose a method to greatly reduce spectral noise, and give the lowest allowed SNR at which the minima may still be identified reliably. We also estimate the power spectrum of the original image, which is a must for the Wiener restoration filter, from the noisy blurred image based on a noncasual autoregressive model. Once above parameters are decided, the Wiener filter is used to restore the noisy blurred image. Our method is very practical; no parameter needs to be known a priori, or to be adjusted manually to fit into various application problems. The proposed method is finally applied to systhesized and real motion blurred images to demonstrate its effectiveness.

  • A Contour-Based Part Segmentation Algorithm

    Mohammed BENNAMOUN  Boualem BOASHASH  

     
    PAPER-Image Theory

      Vol:
    E80-A No:8
      Page(s):
    1516-1521

    Within the framework of a previously proposed vision system, a new part-segmentation algorithm, that breaks an object defined by its contour into its constituent parts, is presented. The contour is assumed to be obtained using an edge detector. This decomposition is achieved in two stages. The first stage is a preprocessing step which consists of extracting the convex dominant points (CDPs) of the contour. For this aim, we present a new technique which relaxes the compromise that exists in most classical methods for the selection of the width of the Gaussian filter. In the subsequent stage, the extracted CDPs are used to break the object into convex parts. This is performed as follows: among all the points of the contour only the CDPs are moved along their normals nutil they touch another moving CDP or a point on the contour. The results show that this part-segmentation algorithm is invariant to transformations such as rotation, scaling and shift in position of the object, which is very important for object recognition. The algorithm has been tested on many object contours, with and without noise and the advantages of the algorithm are listed in this paper. Our results are visually similar to a human intuitive decomposition of objects into their parts.

  • Infinity and Planarity Test for Stereo Vision

    Yasushi KANAZAWA  Kenichi KANATANI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:8
      Page(s):
    774-779

    Introducing a mathematical model of noise in stereo images, we propose a new criterion for intelligent statistical inference about the scene we are viewing by using the geometric information criterion (geometric AIC). Using synthetic and real-image experiments, we demonstrate that a robot can test whether or not the object is located very far away or the object is a planar surface without using any knowledge about the noise magnitude or any empirically adjustable thresholds.

  • Analysis of Connection Delay in Cellular Mobile Communication Systems Using Dynamic Channel Assignment

    Keisuke NAKANO  Hiroshi YOSHIOKA  Masakazu SENGOKU  Shoji SHINODA  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1257-1262

    Dynamic Channel Assignment (DCA), which improves the efficiency of channel use in cellular mobile communication systems, requires finding an available channel for a new call after the call origination. This causes the delay which is defined as the time elapsing between call origination and completion of the channel search. For system planning, it is important to evaluate the delay characteristic of DCA because the delay corresponds to the waiting time of a call and influences service quality. It is, however, difficult to theoretically analyze the delay characteristics except its worst case behavior. The time delay of DCA has not been theoretically analyzed. The objective of this paper is analyzing the distribution and the mean value of the delay theoretically. The theoretical techniques in this paper are based on the techniques for analyzing the blocking rate performance of DCA.

  • A New Bit Timing Recovery Scheme for High Bit Rate Wireless Access

    Toshiaki TAKAO  Yoshifumi SUZUKI  Tadashi SHIRATO  

     
    PAPER

      Vol:
    E80-A No:7
      Page(s):
    1183-1189

    We propose a new bit timing recovery (BTR) scheme, what we call Step Sampled BTR (SSBTR), that can lower the sampling clock frequency and shorten the clock phase convergence time, for burst signals in high bit rate wireless access systems. The SSBTR scheme has the following characteristics. A sine wave resulting from the BTR code passing through a Nyquist Transmission System is always used, the sampling clock has a lower frequency than the system clock, and the clock phase of Intermediate Frequency (IF) signal input can be estimated from as few as 3 sampled data. The SSBTR scheme corrects the clock phase only once in a burst signal. Therefore, in some wireless access systems, some kind of operation must be performed after the SSBTR, in order to deal with long burst signals, instability of the system clock, and so on. In other wireless access systems that do not have these problems, clock phase can be fixed by the SSBTR scheme alone. The preformance of the SSBTR scheme with respect to additive white Gaussian noise (AWGN) was examined by computer simulation. In addition, when SSBTR is implemented in hardware, there are imperfections in the circuitry that lead to phase estimation error and thus deterioration, so we studied the effects of several such imperfections by computer simulation. The results of these simulations clarify the performance of the SSBTR scheme.

26861-26880hit(30728hit)