The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

21321-21340hit(22683hit)

  • Noninvasive Detection of Intracranial Vascular Deformations by Bruit Transducer and Spectral Analysis

    Kenji KOBAYASHI  Jun HASEGAWA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1870-1871

    For the purpose of detecting the intracranial vascular deformations noninvasively, transducer for bruit sound emanated from diseased lesion and analyzing system were developed and applied clinically. Several aspects of the bruit signals were clarified and the possibility of early diagnosis was increased.

  • Scattering Cross Sections of Lossy Dielectric Elliptic Cylinders for Plane Waves

    Minoru ABE  Yasunori HOSHIHARA  Toshio SEKIGUCHI  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1759-1765

    We describe the characteristics of scattering and diffraction of plane E-waves by a lossy dielectric elliptic cylinder. The computational programs for calculating the analytic solutions for the diffraction of a lossy dielectric elliptic cylinder can be achieved. From the calculated results of the backscattering cross section (BSCS) (usually the radar cross section: RCS) and the forward-scattering cross section (FSCS) due to the cross-sectional shape and complex dielectric constant of the elliptic cylinder, the features of the BSCS and FSCS can be clarified as follows. (1) There is a cross-sectional shape of the cylinder which results in a minimum BSCS with a complex dielectric constant of the cylinder. (2) The BSCS and FSCS of the lossy dielectric scatterer approach zero as the scatterer approaches a strip. This result means that no material composing such a strip exists, and the features are very different from those in a perfectly conducting strip. (3) The influence of conductivity, σ, of the cylinder on a scattered wave is small for the relative dielectric constant of εr6. (4) The total scattering cross section of the lossy dielectric elliptic cylinder which causes the minimum BSCS is not small. Hence, it may be considered that the minimum BSCS is determined mainly by interference based on the cross-sectional shape and complex dielectric constant of cylinder, and is not caused by incident wave absorption due to the lossy dielectric.

  • Radiation from a Line Source in a Stratified Slab Waveguide

    Hideaki HORIUCHI  Shoji YAMAGUCHI  Toshio HOSONO  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1814-1819

    In this paper, we developed the analytical method for the radiation field from a line current source placed in a stratified slab waveguide. This method is applicable to the analysis of excitation problem of inhomogeneous slab waveguide by increasing the number of layers. The numerical results are given for the cases of five layers, such as W and M type waveguides, and the inhomogeneous slab waveguide. The influence of guided and leaky modes on the radiation field are studied.

  • Evaluation of Fractal Image Coding

    Hiroshi OHNO  Kiyoharu AIZAWA  Mitsutoshi HATORI  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1907-1909

    Fractal image coding using iterated transformations compresses image data by exploiting the self–similarity of an image. Its compression performance has already been discussed in [2] and several other papers. However the relation between the performance and the self–similarity remains unclear. In this paper, we evaluate fractal coding from the perspective of this relationship.

  • A Study of the LC Resonant Circuit Security Tags

    Kiyoshi INUI  Hiroshi TADA  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1951-1953

    The design theory was revealed by theoretical analysis of the measuring apparatus, and was confirmed experimentally. Higher quality tags having new circuit disigns were proposed by the revealed theory. The measuring apparatus equivalent to the security system was produced to estimate the properties of the LC resonant circuit security tags quantitatively.

  • Application of a Boundary Matching Technique to an Inverse Problem for Circularly Symmetric Objects

    Kenichi ISHIDA  Takato KUDOU  Mitsuo TATEIBA  

     
    LETTER

      Vol:
    E77-C No:11
      Page(s):
    1837-1840

    We present a novel algorithm to reconstruct the refractive-index profile of a circularly symmetric object from measurements of the electromagnetic field scattered when the object is illuminated by a plane wave. The reconstruction algorithm is besed on an iterative procedure of matching the scattered field calculated from a certain refractive-index distribution with the measured scattered field on the boundary of the object. In order to estimate the convergence of the reconstruction, the mean square error between the calculated and measured scattered fields is introduced. It is shown through reconstructing several examples of lossy dielectric cylinders that the algorithm is quite stable and is applicable to high-contrasty models in situations where the Born approximation is not valid.

  • Study for Signal Processing to Survey Pulsars Using Noise Suppression Filter Based on Average Spectrum

    Naoki MIKAMI  Tsuneaki DAISHIDO  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1904-1906

    This letter proposes the method using a filter to suppress the very large noise obstructive to the radio pulsar surveys. This noise suppression filter is constructed from the average of the amplitude spectrum of pulsar signal for each channel. Using this method, the dispersion measure, one of the important parameters in the pulsar surveys, can easily be extracted.

  • Estimation of Source Particle Trajectories from Far Electromagnetic Fields Using the Linard-Wiechert Superpotentials: Twin Particles System

    Hideki KAWAGUCHI  Toshihisa HONMA  

     
    PAPER

      Vol:
    E77-C No:11
      Page(s):
    1802-1807

    A particle trajectory estimation method from far electromagnetic fields are discussed in this paper. Authors have already presented a trajectory estimation method for single particle system and good agreements between a source particle trajectory and an estimated one have been obtained. For this, this paper discusses twin particles system as an examples of multi-particles systems for simplicity. First of all, it is pointed out that far electromagnetic fields from the twin particles system show quite different aspect from the single particle system using an example, radiation patterns produced by two particles which carry out circular motion. This result tells us that any trajectory estimations for general multi-particles system are almost impossible. However, it is shown that when the distance between the particles is small, the estimation method for the single particle system can be applied to the twin particles system, and that twin particles effects appear as disturbance of estimated trajectory.

  • FCM and FCHM Multiprocessors for Computer Vision

    Myung Hoon SUNWOO  J. K. AGGARWAL  

     
    PAPER

      Vol:
    E77-D No:11
      Page(s):
    1291-1301

    In general, message passing multiprocessors suffer from communication overhead and shared memory multiprocessors suffer from memory contention. Also, data I/O overhead limits performance. In particular, computer vision tasks that require massive computation are strongly affected by these disadvantages. This paper proposes new parallel architectures for computer vision, a Flexibly (Tightly/Loosely) Coupled Multiprocessor (FCM) and a Flexibly Coupled Hypercube Multiprocessor (FCHM) to alleviate these problems. FCM and FCHM have a variable address space memory in which a set of neighboring memory modules can be merged into a shared memory by a dynamically partitionable topology. FCM and FCHM are based on two different topologies: reconfigurable bus and hypercube. The proposed architectures are quantitatively analyzed using computational models and parallel vision algorithms are simulated on FCM and FCHM using the Intel's Personal SuperComputer (iPSC), a hypercube multiprocessor, showing significant performance improvements over that of iPSC.

  • Distributed Communications System Technology

    Keiichi KOYANAGI  Hiroshi SUNAGA  Tetsuyasu YAMADA  Makoto TOMURA  Nobuaki KURIHARA  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1350-1362

    This paper describes two main technologies for achieving reliable real-time distributed communications systems. One is the technology to prevent the influence of a fault in an autonomous distributed system from spreading to the whole system (called autonomous distributed system control). The other is a software structure based on distributed processing, the object-oriented approach, and layering for better maintainability and expandability (called OO software structure). For the autonomous distributed system control, several inter-subsystem communication methods are proposed and evaluated. From the standpoints of the fault processing and processing load, frames should be sent through a data link over ATM connection and when a fault occurs the link should be switched over without loss of data. A pilot system achieved good reliability without an excessive number of dynamic steps. This autonomous control method will lead to a highly reliable communications system with large capacity. For the OO software structure, this paper gives experimental results from the implementation of a prototype system. Its distributed environment should lead to high reliability by extending the CHILL run-time routine (RTR). This software structure promises to provide service quickly, to reduce costs, and to make the development of each layer's software independent. A real-time OS, e.g., CTRON kernel combined with RTR can give real-time performance, high reliability and high productivity over the distributed system. The use of RTR can reduce the time for the call recovery process.

  • Procedural Detailed Compaction for the Symbolic Layout Design of CMOS Leaf Cells

    Hiroshi MIYASHITA  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E77-A No:11
      Page(s):
    1957-1969

    This paper describes a procedural detailed compaction method for the symbolic layout design of CMOS leaf cells and its algorithmic aspects. Simple symbolic representations that are loosely designed by users in advance are automatically converted into densely compacted physical patterns in two phases: symbolic–to–pattern conversion and segment–based detailed compaction. Both phases are executed using user-defined procedures and a specified set of design rules. The detailed compaction utilizes a segment–based constraint graph generated by an extended plane sweep method where various kinds of design rules can be applied. Since various kinds of basic operations can be applied to the individual segments of patterns in the procedures, the detailed procedure for processing can be described in accordance with fabrication process technologies and the corresponding sets of design rules. This combined stepwise procedure provides a highly flexible framework for the symbolic layout of CMOS leaf cells. The proposed approach was implemented in a symbolic layout system called CAMEL. To date, more than 300 kinds of symbolic representations of CMOS leaf cells have been designed and are stored in the database. Using several different sets of design rules, symbolic representations have been automatically converted into compacted patterns without design rule violations. The areas of those generated patterns were averaged at 98% of the manually designed patterns. Even in the worst case, the increases in area were less than about 10% of the manually designed ones. Furthermore, since processing times are much shorter than manual design periods, for example, 300 kinds of symbolic representations can be converted to corresponding physical patterns in only a day. It is evident, through these practical design experiences with CAMEL, that our approach is more flexible and process–tolerant than conventional ones.

  • A Dynamic Bias Current Technique for a Bipolar Exponential–Law Element and a CMOS Square–Law Element Usable with Low Supply Voltage

    Katsuji KIMURA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1922-1928

    An emitter–coupled pair with a dynamic bias current and a source–coupled pair with a dynamic bias current are proposed as an exponential–law element and a square–law element that operate as a floating bipolar junction transistor (BJT) and a floating MOS field–effect transistor (MOSFET). In bipolar technology, a hyperbolic sine function circuit and a hyperbolic cosine function circuit are easily obtained by subtracting and summing the output currents of two symmetrical exponential–law elements with positive and negative input signals. In the same manner, an operational transconductance amplifier (OTA) and a squaring circuit are obtained by subtracting and summing the output currents of two symmetrical square-law elements with positive and negative input signals in CMOS technology. The proposed OTA and squaring circuit possess the widest input voltage range ever reported.

  • Implementation Model and Execution Environment for Flexible Configuration of Telecommunication Information Systems

    Masato MATSUO  Yoshitsugu KONDO  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1312-1321

    We are developing GENESIS, a new seamless total environment for designing, developing, installing, and operating various types of telecommunication networks as extremely large distributed processing applications in the future network integrated by ATM. Similar uniform architectures for quick introduction and easy management of service or operation applications have been proposed, such as by TINA, but there has been insufficient study on how to operate and con figure those applications. This paper discusses the implementation model and execution environment in GENESIS from the viewpoint of flexible operation according to network conditions. The implementation model can describe detailed configurations under various conditions on design or operation, independently of the execution environment. To achieve the goals of GENESIS, our execution environment provides message handling functions and a transparent interface for controlling network resources independently of the configuration, and dynamic reconfiguration functions that are independent of the execution. This paper also reports the prototype system GENESIS-1. The GENESIS-1 message handling mechanism and the effect of the reconfiguration functions are described.

  • A Job Dependent Dispatching Scheme in a Heterogeneous Multiserver Network

    Tsuyoshi OHTA  Takashi WATANABE  Tadanori MIZUNO  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1380-1387

    In this paper, we propose the architecture of BALANCE (Better Adaptive Load-balancing through Acquiring kNowledge of Characteristic of an Environment) in which users can submit their jobs without acquiring either a status of an environment or characteristics of jobs and servers even in a widely connected heterogeneous network. The architecture of BALANCE includes three types of information bases and two types of daemons. Information bases, namely job, resource, and environment information base, manage the knowledge of job characteristics, available resources for CPUs, and status of the environment, respectively, as a proxy for users. The dispatching daemon selects an adequate server for each job using knowledge stored in the information bases. A service daemon executes each job. On completing each job, a service daemon gets a statistic of the job and returns it to the dispatching daemon where the job came from so that the statistic will be available at the next dispatching time. BALANCE enables an environment (1) to balance the load, (2) to share software functions as well as hardware facilities, and (3) to learn a user's job characteristics. We have implemented a prototype with more than 50 heterogeneous UNIX workstations connected by different networks. Two simple experiments on this prototype are presented. These experiments show a load balancing scheme that takes the characteristics of each job into account.

  • Efficient Simulation of Lossy Coupled Transmission Lines by the Application of Window Partitioning Technique to the Waveform Relaxation Approach

    Vijaya Gopal BANDI  Hideki ASAI  

     
    PAPER-Analysis of Nonlinear Circuits and Systems

      Vol:
    E77-A No:11
      Page(s):
    1742-1752

    A new algorithm, which is incorporated into the waveform relaxation analysis, for efficiently simulating the transient response of single lossy transmission lines or lossy coupled multiconductor transmission lines, terminated with arbitrary networks will be presented. This method exploits the inherent delay present in a transmission line for achieving simulation efficiency equivalent to obtaining converged waveforms with a single iteration by the conventional iterative waveform relaxation approach. To this end we propose 'line delay window partitioning' algorithm in which the simulation interval is divided into sequential windows of duration equal to the transmission line delay. This window scheme enables the computation of the reflected voltage waveforms accurately, ahead of simulation, in each window. It should be noted that the present window partitioning scheme is different from the existing window techniques which are aimed at exploiting the non–uniform convergence in different windows. In contrast, the present window technique is equivalent to achieving uniform convergence in all the windows with a single iteration. In addition our method eliminates the need to simulate the transmission line delay by the application of Branin's classical method of characteristics. Further, we describe a simple and efficient method to compute the attenuated waveforms using a particular form of lumped element model of attenuation function. Simulation examples of both single and coupled lines terminated with linear and nonlinear elements will be presented. Comparison indicates that the present method is several times faster than the previous waveform relaxation method and its accuracy is verified by the circuit simulator PSpice.

  • Chaotic Responses in a Self–Recurrent Fuzzy Inference with Nonlinear Rules

    Kazuo SAKAI  Tomio MACHIDA  Masao MUKAIDONO  

     
    PAPER-Fuzzy System--Theory and Applications--

      Vol:
    E77-A No:11
      Page(s):
    1736-1741

    It is shown that a self–recurrent fuzzy inference can cause chaotic responses at least three membership functions, if the inference rules are set to represent nonlinear relations such as pie–kneading transformation. This system has single input and single output both with crisp values, in which membership functions is taken to be triangular. Extensions to infinite memberships are proposed, so as to reproduce the continuum case of one–dimensional logistic map f(x)=Ax(1–x). And bifurcation diagrams are calculated for number N of memberships of 3, 5, 9 and 17. It is found from bifurcation diagrams that different periodic states coexist at the same bifurcation parameter for N9. This indicates multistability necessarily accompanied with hysteresis effects. Therefore, it is concluded that the final states are not uniquely determined by fuzzy inferences with sufficiently large number of memberships.

  • Data-Cyclic Shared Memory (DCSM) in Distributed Environments

    Hiroyuki YAMASHITA  

     
    PAPER

      Vol:
    E77-B No:11
      Page(s):
    1372-1379

    With advances in the speed, bandwidth and reliability of telecommunications networks and in the performance of workstations, distributed processing has become widespread. Information sharing among distributed nodes and its mutual exclusion are of great importance for efficient distributed processing. This paper systematizes and quantitizes a shared memory called Data-Cyclic Shared Memory (DCSM) from the viewpoints of memory organization and access mode. In DCSM, the propagation delay of transmission lines and the data relaying delay in each node are used for information storage, and memory information encapsuled in the form of "memory cells" circulates infinitely in a logical ring type network. The distinctive feature of DCSM, in addition to the way data is stored, is that data and the access control are completely distributed, which contrasts with existing memory where both are centralized. Therefore, there are no performance bottlenecks caused by concentrating memory access. Distributed Shared Memory (DSM), which has a scheme similar to DCSM's, has also been proposed for distributed environments. In DSM, the data is also distributed but the control for accessing each data is centralized. From the viewpoints of memory organization and the access method, DCSM is very flexible. For instance, word length can be spatially varied by defining data size at each address, and each node can be equipped with mechanisms for special functions such as the content address specification and asynchronous report of change in contents. Because of this flexibility, it can be called a "software-defined memory." The analysis also reveals that DCSM has the disadvantages of large access delay and small memory capacity. The capacity can be enlarged by inserting FIFO type queues into the circulation network, and the delay can be shortened by circulating replicas of original memory cells. However, there is a trade off between the maximal capacity and the mean access time. DCSM has many potential applications, such as in the mutual exclusion control of distributed resources.

  • Considerations for Computational Efficiency of Spectral Domain Moment Method

    Yasufumi SASAKI  Masanobu KOMINAMI  Hiroji KUSAKA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1948-1950

    An efficient full–wave spectral domain moment method is developed to compute the current distribution and the radiation associated with microstrip discontinuities. Two techniques are used to increase the efficiency of the method of moments algorithm so that a transmission line of moderate electrical size can be analyzed in reasonable time.

  • Time-Resolved Nonstationary-Field Dynamics in Nonlinear Optical Channel Waveguides: Numerical Evidence for Intrapulse Switching and Space-Time Spontaneous Symmetry-Breaking Instabilities

    Kazuya HAYATA  Masanori KOSHIBA  

     
    LETTER

      Vol:
    E77-C No:11
      Page(s):
    1828-1832

    Numerical simulations for the (3+1)-dimensional optical-field dynamics of nonstationary pulsed beams that propagate down Kerr-like nonlinear channel waveguides are carried out for what is to our knowledge the first time. Time-resolved intrapulse switching due to spontaneous symmetry breaking of optical fields from a quasilinear symmetric field to a nonlinear asymmetric field is analyzed. A novel instability phenomenon triggered by the symmetry breakdown is found.

  • Estimation of Body Structure by Biomechanical Impedance

    Hisao OKA  Masakazu YASUNA  Shun–ya SAKAMOTO  Takashi FUKUDA  

     
    LETTER

      Vol:
    E77-A No:11
      Page(s):
    1872-1874

    The mechanical impedance of silicone–gel model or chest surface has been measured and the viscoelasticity and effective vibrating radius have been obtained from the impedance. They depend on the distance between the internal block of the silicone–gel/ribs of right chest and the gel surface/skin surface. The 3–D image of internal structure is reconstructed, based on the relation between the distance from the surface and the effective vibrating radius.

21321-21340hit(22683hit)