The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Y(22683hit)

21541-21560hit(22683hit)

  • A VLSI-Oriented Model-Based Robot Vision Processor for 3-D Instrumentation and Object Recognition

    Yoshifumi SASAKI  Michitaka KAMEYAMA  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1116-1122

    In robot vision system, enormously large computation power is required to perform three-dimensional (3-D) instrumentation and object recognition. However, many kinds of complex and irregular operations are required to make accurate 3-D instrumentation and object recognition in the conventional method for software implementation. In this paper, a VLSI-oriented Model-Based Robot Vision (MBRV) processor is proposed for high-speed and accurate 3-D instrumentation and object recognition. An input image is compared with two-dimensional (2-D) silhouette images which are generated from the 3-D object models by means of perspective projection. Because the MBRV algorithm always gives the candidates for the accurate 3-D instrumentation and object recognition result with simple and regular procedures, it is suitable for the implementation of the VLSI processor. Highly parallel architecture is employed in the VLSI processor to reduce the latency between the image acquisition and the output generation of the 3-D instrumentation and object recognition results. As a result, 3-D instrumentation and object recognition can be performed 10000 times faster than a 28.5 MIPS workstation.

  • Low-Power 8-Valued Cellular Array VLSI for High-Speed Image Processing

    Takahiro HANYU  Maho KUWAHARA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1042-1048

    This paper presents a low-power 8-valued cellular array VLSI for high-speed image processing based on logical neighborhood operations with 33 windows. This array is useful for performing low-level image processing such as noise removal and edge detection, in intelligent integrated systems where immediate response to input change as well as high throughput is needed. In order to achieve high-speed image processing, template matching for neighborhood operations can be performed in parallel on each row. Each row of the image is operated in a pipelining manner. The direct 8-valued encoding of the matched results for three different 33 masks makes it possible to reduce the number of operations by one-third. In the hardware implementation, the matching cell for logical neighborhood operations can be implemented compactly using MOS transistors with different threshold voltage, which are programmed by multiple ion implants. Moreover, a new literal circuit for detecting multiple-valued signals using a dynamic design style eliminates hazards due to timing skews in the difference of various input voltage levels, so that the dynamic power dissipation of the proposed circuit is greatly reduced. Finally, it is demonstrated that the processing time of the proposed cellular array is reduced to about 40 percent in comparison with that of a corresponding binary circuit when power dissipation/area = 0.3 W/100 mm2.

  • A Memory-Based Recurrent Neural Architecture for Chip Emulating Cortical Visual Processing

    Luigi RAFFO  Silvio P. SABATINI  Giacomo INDIVERI  Giovanni NATERI  Giacomo M. BISIO  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1065-1074

    The paper describes the architecture and the simulated performances of a memory-based chip that emulates human cortical processing in early visual tasks, such as texture segregation. The featural elements present in an image are extracted by a convolution block and subsequently processed by the cortical chip, whose neurons, organized into three layers, gain relational descriptions (intelligent processing) through recurrent inhibitory/excitatory interactions between both inter-and intra-layer parallel pathways. The digital implementation of this architecuture directly maps the set of equations determining the status of the cortical network to achieve an optimal exploitation of VLSI technology in neural computation. Neurons are mapped into a memory matrix whose elements are updated through a programmable computational unit that implements synaptic interconnections. By using 0.5 µm-CMOS technology, full cortical image processing can be attained on a single chip (2020 mm2 die) at a rate higher than 70 frames/second, for images of 256256 pixels.

  • 7.5 MFLIPS Fuzzy Microprocessor Using SIMD and Logic-in-Memory Structure

    Mamoru SASAKI  Fumio UENO  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1075-1082

    A fuzzy microprocessor is developed using 1.2 µm CMOS process. The inference scheme for the if-then fuzzy rules consists of three main steps i. e. if-part process, then-part process and defuzzification. In order to realize very high-speed inference and moderate programmability, we introduce three-type different structures i.e. SIMD, logic-in-memory and Wallace tree structures which are suitable for the three main steps. The inference speed including defuzzification is 7.5 MFLIPS which is 12.9 times higher than the previous VLSI implementation, and it can carry out many rules (960 rules) and many input and output variables (16 variables).

  • Graceful Degradation for Multiprocessor Realization of Maximally Flat FIR Digital Filters

    Saed SAMADI  Akinori NISHIHARA  Nobuo FUJII  

     
    PAPER

      Vol:
    E77-C No:7
      Page(s):
    1083-1091

    In this paper we propose a method for increasing the reliability in multiprocessor realization of lowpass and highpass FIR digital filters possessing a maximally flat magnitude response. This method is based on the use of array realization of the filter which has been proposed earlier by the authors. It is shown that if a processing module of the array functions erroneously, it is possible to exclude the module and still obtain a lowpass FIR filter. However, as a price we should tolerate a slight degradation in the magnitude response of the filter that is equivalent to a wider transition band. We also analyze the behavior of the filter when our proposed schemes are implemented on more than one module. The justification of our approach is based on that a slight degradation of the spectral characteristics of a filter may be well tolerated in most filtering applications and thus a graceful degradation in the frequency domain can sufficiently reduce the vulnerability to errors.

  • Voice Activity Detection and Transmission Error Control for Digital Cordless Telephone System

    Seishi SASAKI  Ichiro MATSUMOTO  Osamu WATANABE  Kenzo URABE  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    948-955

    Personal Handy Phone (PHP), the Japanese digital cordless telephone system is being developed. The 32kbits/s ADPCM (Adaptive Differential Pulse Code Modulation) codec has been standardized for PHP. This paper describes firstly, the advanced algorithms of a Voice Activity Detection (VAD) function that reduces power dissipation of a digital cordless telephone terminal, secondly, a comfort noise generator operates in conjunction with the VAD and finally, a transmission error control based on the use of the prediction coefficients generated in the ADPCM codec. These proposed algorithms function in the low signal-to-noise ratio (SNR) environment of personal radio communications. The quality of the reconstructed speech after the process is influenced by the VAD decision errors (false detection when no voice is present, or no detection when voice is present) , the similarity of the generated comfort noise to the actual background noise, and the transmission quality. The simulation results of the performance achieved by these algorithms are shown and required loading of the computation are also given.

  • Semi-Autonomous Synchronization among Base Stations for TDMA-TDD Communication Systems

    Hiroshi KAZAMA  Shigeki NITTA  Masahiro MORIKURA  Shuzo KATO  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    862-867

    This paper proposes a semi-autonomous frame synchronization scheme for a TDMA (Time Division Multiple Access)-TDD (Time Division Duplexing) personal communication system to realize accurate frame synchronization in a simple manner. The proposed scheme selects specific adjacent base stations by the station indicator (SID), carries out high resolution frame timing control, and compensates the propagation delay between base stations by using geographical data. This autonomously synchronizes all base stations to each other. Computer simulation and analysis results confirm the accurate and stable TDMA frame synchronization of all base stations even in fading environments.

  • Full-Duplex Asynchronous Spread Spectrum Modem Using a SAW Convolver for 2.4-GHz Wireless LAN

    Hiroyuki NAKASE  Akihiko NAMBA  Kazuya MASU  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    868-875

    An asynchronous spread spectrum (SS) modem for 2.4-GHz wireless LAN has been implemented using an efficient ZnO-SiO2-Si surface acoustic wave (SAW) convolver. The design of the highly efficient SAW convolver was developed at Tohoku University and commercially manufactured by Clarion Co., Japan. The modem can operate under full-duplex transmission in the same frequency range of the 2.4-GHz SS band. The SS modem is based on a direct-sequence/code-shift-keying (DS/CSK) method for the modulation. Pseudo-noise (PN) codes are chosen from a preferred pair of 127-chip m-sequences and the code rate is 14MHz. The asynchronous demodulation is simply realized utilizing the coherent correlation characteristics of the SAW convolver. Under full-duplex transmission, the self-jamming caused by a transmitted signal in the modem itself is effectively reduced by an RF isolator and the SS processing gain. The implemented modem has been tested using a coaxial cable with attenuator. A bit error rate of 10-6 under full-duplex transmission is observed at 78.3dB of a desired to undesired signal ratio. The effective range is estimated on the basis of two-path propagation model. From self-jamming rejection of 78.3dB, the effective range under real-time full-duplex is estimated to be about 200m.

  • Performance Evaluation of Slow-Frequency Hopped/Joint Frequency-Phase Modulation in Broadband and Partial-Band Noise Jamming

    Ibrahim GHAREEB  Abbas YONGAÇOLU  

     
    PAPER

      Vol:
    E77-B No:7
      Page(s):
    891-899

    A new frequency hopped spread spectrum system is introduced. The frequency hopped signal is a combination of multi frequency and multi phase signals and is referred to as Frequency Hopped/Joint Frequency-Phase Modulation (FH/JFPM). A noncoherent receiver for the FH/JFPM signals is introduced and an exact expression for the bit error rate is obtained. A performance analysis of this system is given in the presence of broadband and partial-band noise jamming. The optimal jamming strategy is evaluated. The results show that under these jamming conditions the FH/JFPM perform better than the FH/M-ary DPSK and FH/M-ary FSK systems. It is also shown that for a given channel bandwidth and data rate, the FH/JFPM system has more processing gain than its FSK or DPSK counterparts.

  • Finite State Translation Systems and Parallel Multiple Context-Free Grammars

    Yuichi KAJI  Hiroyuki SEKI  Tadao KASAMI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:6
      Page(s):
    619-630

    Finite state translation systems (fsts') are a widely studied computational model in the area of tree automata theory. In this paper, the string generating capacities of fsts' and their subclasses are studied. First, it is shown that the class of string languages generated by deterministic fsts' equals to that of parallel multiple context-free grammars, which are an extension of context-free grammars. As a corollary, it can be concluded that the recognition problem for a deterministic fsts is solvable in O(ne1)-time, where n is the length of an input word and e is a constant called the degree of the deterministic fsts'. In contrast to the latter fact, it is also shown that nondeterministic monadic fsts' with state-bound 2 can generate an NP-complete language.

  • Dynamically Overlapped Partitioning Technique to Implement Waveform Relaxation Simulation of Bipolar Circuits

    Vijaya Gopal BANDI  Hideki ASAI  

     
    LETTER-Nonlinear Circuits and Systems

      Vol:
    E77-A No:6
      Page(s):
    1080-1084

    A new efficient waveform relaxation technique based on dynamically overlapped partitioning scheme is presented. This overlapped partitioning method enables the application of waveform relaxation technique to bipolar VLSI circuits. Instead of fixed overlapping, we select the depth of overlapping dynamically based on the sensitivity criteria. By minimizing the overlapped area, we could reduce the additional computational overhead which results from overlapping the partitions. This overlapped waveform relaxation method has better convergence properties due to smaller error introduced at each step compared with standard relaxation techniques. When overlapped partitioning is used in the case of digital circuits, the waveforms obtained after first iteration are nearly accurate. Therefore, by using these waveforms as initial guess waveforms for the second iterations we can reduce Newton-Raphson iterations at each time point.

  • A Class of Neural Networks Based on Approximate Identity for Analog IC's Hardware Implementation

    Massimo CONTI  Simone ORCIONI  Claudio TURCHETTI  

     
    PAPER-Neural Networks

      Vol:
    E77-A No:6
      Page(s):
    1069-1079

    Artificial Neural Networks (ANN's) that are able to learn exhibit many interesting features making them suitable to be applied in several fields such as pattern recognition, computer vision and so forth. Learning a given input-output mapping can be regarded as a problem of approximating a multivariate function. In this paper we will report a theoretical framework for approximation, based on the well known sequences of functions named approximate identities. In particular, it is proven that such sequences are able to approximate a generally continuous function to any degree of accuracy. On the basis of these theoretical results, it is shown that the proposed approximation scheme maps into a class of networks which can efficiently be implemented with analog MOS VLSI or BJT integrated circuits. To prove the validity of the proposed approach a series of results is reported.

  • Analysis of Head and Eye Coordination in Patients with Alzheimer's Desease

    Mitsuho YAMADA  Mitsuru FUJII  Hitoshi HONGO  Shinji MURAKAMI  Norihito NAKANO  Kenya UOMORI  Kumiko UTSUMI  Hiroshi YOSHIMATSU  Jiro MIYAZAWA  Keiichi UENO  Ryo FUKATSU  Naohiko TAKAHATA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E77-D No:6
      Page(s):
    705-719

    With the advent of an aging society, the incidence of Alzheimer-type dementia (hereinafter referred to as AD for convenience) has drastically increased. Compared with classic cerebrovascular dementia, AD requires different therapeutic modalities. Despite such differences, it is difficult to establish a differential diagnosis of AD and cerebrovascular dementia. In the present paper, we analyze the neuropsychological symptoms and signs associated with AD, such as visual cognitive dysfunction, with particular attention to head and eye coordination. The subjects were allowed to gaze at targets disposed 1 m away and at a visual angle of 25 and 50 in order to compare healthy volunteers and patients with senile dementias such as multi-infarct dementia (MID). As a consequence, patients with AD presented clinical manifestations not seen in patients with other senile dementias; that is, (1) an increase in stepwise eye movement, (2) anisotropy in the velocity of right-directional and left-directional eye movements, (3) a decrease in the velocity of head movements (4) incomplete gaze, and (5) decreased head share.

  • Intermodulation and Noise Power Ratio Analysis of Multiple-Carrier Amplifiers Using Discrete Fourier Transform

    Tadashi TAKAGI  Satoshi OGURA  Yukio IKEDA  Noriharu SUEMATSU  

     
    PAPER

      Vol:
    E77-C No:6
      Page(s):
    935-941

    A novel analysis method of the intermodulation (IM) and the noise power ratio (NPR) of multiple-carrier amplifiers is descrided. This method, based on Discrete Fourier Transform, allows an accurate calculation of IM and NPR of the amplifier having multiple carriers by directly using measured single-carrier amplitude and phase characteristics. This method has an outstanding feature in that it can be applied to the general case of n carriers having an arbitrary power level as long as frequency-dependence of amplitude and phase characteristics is negligibly small. Applying this method to the linearized amplifier, a good agreement between measured and calculated results for IM3, IM5, and NPR has been obtained for operation from linear up to saturation, which shows this method would be a good candidate for calculating IM and NPR of multiple-carrier amplifiers.

  • A Measurement Method of Complex Permittivity at Pseudo Microwave Frequencies Using a Cavity Resonator Filled with Dielectric Material

    Akira NAKAYAMA  

     
    PAPER

      Vol:
    E77-C No:6
      Page(s):
    894-899

    This paper describes a nondestructive measurement method for complex permittivity of dielectric material at pseudo microwave frequencies. The resonator used in this study has a cylindrical cavity filled with a sapphire material of a well known complex permittivity. The resonator is divided into two parts at the center. A dielectric substrate specimen is clamped with these halves. Relative permittivity εand loss tangent tan δ of the specimen are obtained at 3 GHz using the TE011 resonance mode. The accuracy of the present method is evaluated through the comparison of the measured values by the new method with those at around 10 GHz by the conventional empty cavity resonator method. The errors of measurements are smaller than 1% and 1105 for εand tan δ, respectively.

  • Round Robin Test on a Dielectric Resonator Method for Measuring Complex Permittivity at Microwave Frequency

    Yoshio KOBAYASHI  Hiroshi TAMURA  

     
    INVITED PAPER

      Vol:
    E77-C No:6
      Page(s):
    882-887

    The dielectric resonator method is now widely accepted as a precise measurement method for determining the dielectric properties at microwave frequencies. This paper describes the measurement results of εr, tan δ and TCf determined by a round robin test of this method. The resultant measurement errors were Δεr/εr0.10%, Δtan δ0.5105 and ΔTCf0.5 ppm/K, where Δdenotes a standard deviation. The causes of measurement errors and the conditions to improve the measurement accuracy are discussed.

  • Accurate Q-Factor Evaluation by Resonance Curve Area Method and Its Application to the Cavity Perturbation

    Taro MIURA  Takeshi TAKAHASHI  Makoto KOBAYASHI  

     
    PAPER

      Vol:
    E77-C No:6
      Page(s):
    900-907

    An improvement of Q evaluation is discussed. The Resonance Curve Area method was confirmed to give a deviation in the order of 6104. The result was three times more accurate than the widely known Q evaluating method which utilizes the cursor function installed in a network analyzer. A discussion is also made on the physical validity of the RCA method. It is shown that the application of the RCA method improves the accuracy of the cavity perturbation method. Actual measurements have shown that the deviation of dielectric constant is less than 1% and that of the loss tangent is less than 3%, in the order of 104. The accuracy of the RCA method was estimated to be three times that of the conventional cavity perturbation technique. The consistency of the perturbation with other methods has also confirmed. The accuracy comparison to more accurate formulae derived from a rigorous solution have shown that the difference is sufficiently small.

  • The Characteristic Improvement of a Digital Filter Using a Feedback Path

    Koichiro IWASAKI  Rokuya ISHII  

     
    PAPER-Digital Signal Processing

      Vol:
    E77-A No:6
      Page(s):
    956-961

    It is important to obtain a low coefficient sensitivity digital filter. This paper presents a new low coefficient sensitivity network structure that consists of a second order digital filter and a feedback path. This network structure is based on the effectiveness of the feedback path in an analog system. The coefficient sensitivity of the proposed digital filter can be control with the coefficient of the feedback path. Using this property, the digital filter with the low coefficient sensitivity is obtained. To add the feedback path makes the frequency response deviate from the characteristic of the original second order digital filter, but the deviation can be compensated with the other coefficients. A nonlinear optimization technique is employed to determine the coefficients of the digital filter. The proposed method is not effective only to narrow-band low-pass but wide-band low-pass filters.

  • A Simulation Result for Simultaneously Bounded AuxPDAs

    Tetsuro NISHINO  

     
    LETTER-Automata, Languages and Theory of Computing

      Vol:
    E77-D No:6
      Page(s):
    720-722

    Let S(n) be a space constructible function such that S(n) log n. In this paper, we show that AuxSpTu (S(n),T(n)) NSPACE (S(n)log T(n)), where AuxSpTu (S(n),T(n)) is the class of languages accepted by nondeterministic auxiliary pushdown automata operating simultaneously in O(S(n)) space and O(T(n)) turns of the auxiliary tape head.

  • Study on Semicylindrical Microstrip Applicator for Microwave Hyperthermia

    Takashi SHIMOTORI  Yoshio NIKAWA  Shinsaku MORI  

     
    PAPER

      Vol:
    E77-C No:6
      Page(s):
    942-948

    A semicylindrical microstrip applicator system is proposed and designed, both for microwave heating and for noninvasive temperature estimation, in application to hyperthermia treatment. The experimental results showed that the system functions both as a heating device and as a means of noninvasive temperature estimation. Therefore, electrical switching of these two functions makes the system realize both heating and temperature estimation. These functions reduce the pain of hyperthermia therapy for patients. The system is constructed of a water-loaded cylindrical applicator. Thus, the whole system can be made compact compared to conventional applicators. This improvement allows for various merits, such as realizing a surface cooling effect and decreased leakage of electromagnetic (EM) waves. When the applicator is set as an array arrangement, the system can be used as a microwave heating device. The penetration depth can be varied by adjusting phases of the EM wave radiated from each applicator. The experimental results at 430 MHz showed that semicylindrical microstrip applicators can be expected to be valid for tumor heating at depths within 55 mm. Moreover, by measuring transmission power between the two applicators, the system can be used to estimate temperature inside the medium. The transmission power which was measured in the frequency domain was converted in the time domain. By such a method, temperature distribution was calculated by solving simple simultaneous primary equations. The results of the temperature estimation show that the number of estimated temperature segments which have an error within 0.5 is 28 out of 36. The system can be easily used as a temperature measuring applicator as well as a heating applicator.

21541-21560hit(22683hit)