The search functionality is under construction.

Keyword Search Result

[Keyword] analog-to-digital converter(51hit)

1-20hit(51hit)

  • Digital Calibration Algorithm of Conversion Error Influenced by Parasitic Capacitance in C-C SAR-ADC Based on γ-Estimation

    Satoshi SEKINE  Tatsuji MATSUURA  Ryo KISHIDA  Akira HYOGO  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    516-524

    C-C successive approximation register analog-to-digital converter (C-C SAR-ADC) is space-saving architecture compared to SAR-ADC with binary weighted capacitive digital-to-analog converter (CDAC). However, the accuracy of C-C SAR-ADC is degraded due to parasitic capacitance of floating nodes. This paper proposes an algorithm calibrating the non-linearity by γ-estimation to accurately estimate radix greater than 2 required to realize C-C SAR-ADC. Behavioral analyses show that the radix γ-estimation error become within 1.5, 0.4 and 0.1% in case of 8-, 10- and 12-bit resolution ADC, respectively. SPICE simulations show that the γ-estimation satisfies the requirement of 10-bit resolution C-C SAR-ADC. The C-C SAR-ADC using γ-estimation achieves 9.72bit of ENOB, 0.8/-0.5LSB and 0.5/-0.4LSB of DNL/INL.

  • Advances in Voltage-Controlled-Oscillator-Based ΔΣ ADCs Open Access

    Shaolan LI  Arindam SANYAL  Kyoungtae LEE  Yeonam YOON  Xiyuan TANG  Yi ZHONG  Kareem RAGAB  Nan SUN  

     
    INVITED PAPER

      Vol:
    E102-C No:7
      Page(s):
    509-519

    Ring voltage-controlled-oscillators (VCOs) are increasingly being used to design ΔΣ ADCs. They have the merits of simple, highly digital and low-voltage tolerant, making them attractive alternatives for the classic scaling-unfriendly operational-amplifier-based methodology. This paper aims to provide a summary on the advancement of VCO-based ΔΣ ADCs. The scope of this paper includes the basics and motivations behind the VCO-based ADCs, followed by a survey covering a wide range of architectures and circuit techniques in both continuous-time (CT) and discrete-time (DT) implementation, and will discuss the key insights behind the contributions and drawbacks of these architectures.

  • A Low Voltage Stochastic Flash ADC without Comparator

    Xuncheng ZOU  Shigetoshi NAKATAKE  

     
    PAPER

      Vol:
    E102-A No:7
      Page(s):
    886-893

    A low voltage stochastic flash ADC (analog-to-digital converter) is presented, with an inverter-based comparative unit which is used to replace comparator for comparison. Aiming at the low voltage and low power consumption, a key of our design is in the simplicity of the structure. The inverter-based comparative unit replacing a comparator enables us to decrease the number of transistors for area saving and power reduction. We insert the inverter-chain in front of the comparative unit for the signal stability and discuss an appropriate circuit structure for the resolution by analyzing three different ones. Finally, we design the whole stochastic flash ADC for verifying our idea, where the supply voltage can go down to 0.6V on the 65nm CMOS process, and through post-layout simulation result, we can observe its advantage visually in voltage, area and power consumption.

  • Delta-Sigma ADC Based on Switched-Capacitor Integrator with FIR Filter Structure Open Access

    Satoshi SAIKATSU  Akira YASUDA  

     
    PAPER

      Vol:
    E102-A No:3
      Page(s):
    498-506

    This paper presents a novel delta-sigma modulator that uses a switched-capacitor (SC) integrator with the structure of a finite impulse response (FIR) filter in a loop filter configuration. The delta-sigma analog-to-digital converter (ΔΣADC) is used in various conversion systems to enable low-power, high-accuracy conversion using oversampling and noise shaping. Increasing the gain coefficient of the integrator in the loop filter configuration of the ΔΣADC suppresses the quantization noise that occurs in the signal band. However, there is a trade-off relationship between the integrator gain coefficient and system stability. The SC integrator, which contains an FIR filter, can suppress quantization noise in the signal band without requiring an additional operational amplifier. Additionally, it can realize a higher signal-to-quantization noise ratio. In addition, the poles that are added by the FIR filter structure can improve the system's stability. It is also possible to improve the flexibility of the pole placement in the system. Therefore, a noise transfer function that does not contain a large gain peak is realized. This results in a stable system operation. This paper presents the essential design aspects of a ΔΣADC with an FIR filter. Two types of simulation results are examined for the proposed first- and second-order, and these results confirm the effectiveness of the proposed architecture.

  • A Third-Order Multibit Switched-Current Delta-Sigma Modulator with Switched-Capacitor Flash ADC and IDWA

    Guo-Ming SUNG  Leenendra Chowdary GUNNAM  Wen-Sheng LIN  Ying-Tzu LAI  

     
    PAPER-Electronic Circuits

      Vol:
    E100-C No:8
      Page(s):
    684-693

    This work develops a third-order multibit switched-current (SI) delta-sigma modulator (DSM) with a four-bit switched-capacitor (SC) flash analog-to-digital converter (ADC) and an incremental data weighted averaging circuit (IDWA), which is fabricated using 0.18µm 1P6M CMOS technology. In the proposed DSM, a 4-bit SC flash ADC is used to improve its resolution, and an IDWA is used to reduce the nonlinearity of digital-to-analog converter (DAC) by moving the quantization noise out of the signal band by first-order noise shaping. Additionally, the proposed differential sample-and-hold circuit (SH) exhibits low input impedance with feedback and width-length adjustment in the SI feedback memory cell (FMC) to increase the conversion rate. A coupled differential replicate (CDR) common-mode feedforward circuit (CMFF) is used to compensate for the mirror error that is caused by the current mirror. Measurements indicate that the signal-to-noise ratio (SNR), dynamic range (DR), effective number of bits (ENOB), power consumption, and chip area are 64.1 dB, 64.4 dB, 10.36 bits, 18.82 mW, and 0.45 × 0.67 mm2 (without I/O pad), respectively, with a bandwidth of 20 kHz, an oversampling ratio (OSR) of 256, a sampling frequency of 10.24 MHz, and a supply voltage of 1.8 V.

  • An 11-Bit Single-Ended SAR ADC with an Inverter-Based Comparator for Design Automation

    Guan-Wei JEN  Wei-Liang LIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E99-C No:12
      Page(s):
    1331-1334

    This paper proposes a low power single-ended successive approximation register (SAR) analog-to-digital converter (ADC) to replace the only analog active circuit, the comparator, with a digital circuit, which is an inverter-based comparator. The replacement helps possible design automation. The inverter threshold voltage variation impact is minimal because an SAR ADC has only one comparator, and many applications are either insensitive to the resulting ADC offset or easily corrected digitally. The proposed resetting approach mitigates leakage when the input is close to the threshold voltage. As an intrinsic headroom-free, and thus low-rail-voltage, friendly structure, an inverter-based comparator also occupies a small area. Furthermore, an 11-bit ADC was designed and manufactured through a 0.35-µm CMOS process by adopting a low-power switching procedure. The ADC achieves an FOM of 181fJ/Conv.-step at a 25kS/s sampling rate when the supply voltage VDD is 1.2V.

  • A 10-bit 20-MS/s Asynchronous SAR ADC with Meta-Stability Detector Using Replica Comparators

    Sang-Min PARK  Yeon-Ho JEONG  Yu-Jeong HWANG  Pil-Ho LEE  Yeong-Woong KIM  Jisu SON  Han-Yeol LEE  Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E99-C No:6
      Page(s):
    651-654

    A 10-bit 20-MS/s asynchronous SAR ADC with a meta-stability detector using replica comparators is proposed. The proposed SAR ADC with the area of 0.093mm2 is implemented using a 130-nm CMOS process with a 1.2-V supply. The measured peak ENOBs for the full rail-to-rail differential input signal is 9.6bits.

  • An On-Chip Monitoring Circuit with 51-Phase PLL-Based Frequency Synthesizer for 8-Gb/s ODR Single-Ended Signaling Integrity Analysis

    Pil-Ho LEE  Yu-Jeong HWANG  Han-Yeol LEE  Hyun-Bae LEE  Young-Chan JANG  

     
    BRIEF PAPER

      Vol:
    E99-C No:4
      Page(s):
    440-443

    An on-chip monitoring circuit using a sub-sampling scheme, which consists of a 6-bit flash analog-to-digital converter (ADC) and a 51-phase phase-locked loop (PLL)-based frequency synthesizer, is proposed to analyze the signal integrity of a single-ended 8-Gb/s octal data rate (ODR) chip-to-chip interface with a source synchronous clocking scheme.

  • 99.4% Switching Energy Saving and 87.5% Area Reduction Switching Scheme for SAR ADC

    Li BIN  Deng ZHUN  Xie LIANG  Xiangliang JIN  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:10
      Page(s):
    984-986

    A high energy-efficiency and area-reduction switching scheme for a low-power successive approximation register (SAR) analog-to-digital converter (ADC) is presented. Based on the sequence initialization, monotonic capacitor switching procedure and multiple reference voltages, the average switching energy and total capacitance of the proposed scheme are reduced by 99.4% and 87.5% respectively, compared to the conventional architecture.

  • A 10-bit 100 MS/s Successive Approximation Register Analog-To-Digital Converter Design

    Jhin-Fang HUANG  Wen-Cheng LAI  Cheng-Gu HSIEH  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E97-C No:8
      Page(s):
    833-836

    In this paper, a 1.8-V 10-bit 100,MS/s successive approximation register (SAR) analog-to-digital converter (ADC) simulated in a TSMC 0.18-$mu$m CMOS process is presented. By applying ten comparators followed by an asynchronous trigger logic, the proposed SAR ADC achieves high speed operation. Compared to the conventional SAR ADC, there is no significant delay in the digital feedback logic in this design. With the sampling rate limited only by the ten delays of the capacitor DAC settling and comparators quantization, the proposed SAR ADC achieves a peak SNDR of 61.2,dB at 100,MS/s and 80,MS/s, consuming 3.2,mW and 3.1,mW respectively.

  • A Low-Cost Stimulus Design for Linearity Test in SAR ADCs

    An-Sheng CHAO  Cheng-Wu LIN  Hsin-Wen TING  Soon-Jyh CHANG  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    538-545

    The proposed stimulus design for linearity test is embedded in a differential successive approximation register analog-to-digital converter (SAR ADC), i.e. a design for testability (DFT). The proposed DFT is compatible to the pattern generator (PG) and output response analyzer (ORA) with the cost of 12.4-% area of the SAR ADC. The 10-bit SAR ADC prototype is verified in a 0.18-µm CMOS technology and the measured differential nonlinearity (DNL) error is between -0.386 and 0.281 LSB at 1-MS/s.

  • 1-GHz, 17.5-mW, 8-bit Subranging ADC Using Offset-Cancelling Charge-Steering Amplifier

    Kenichi OHHATA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    289-297

    A high-speed and low-power 8-bit subranging analog-to-digital converter (ADC) based on 65-nm CMOS technology was fabricated. Rather than using digital foreground calibration, an analog-centric approach was adopted to reduce power dissipation. An offset cancelling charge-steering amplifier and capacitive-averaging technique effectively reduce the offset, noise, and power dissipation of the ADC. Moreover, the circuit used to compensate the kickback noise current from the comparator can also reduce the power dissipation. The reference-voltage generator for the fine ADC is composed of a fine ladder and a capacitor providing an AC signal path. This configuration reduces the power dissipation of the selection signal drivers for the analog multiplexer. A test chip fabricated using 65-nm digital CMOS technology achieved a high sampling rate of 1GHz, a low power dissipation of 17.5mW, and a figure of merit of 118fJ/conv.-step.

  • Digital Background Calibration for a 14-bit 100-MS/s Pipelined ADC Using Signal-Dependent Dithering

    Zhao-xin XIONG  Min CAI  Xiao-Yong HE  Yun YANG  

     
    PAPER-Electronic Circuits

      Vol:
    E97-C No:3
      Page(s):
    207-214

    A digital background calibration technique using signal-dependent dithering is proposed, to correct the nonlinear errors which results from capacitor mismatches and finite opamp gain in pipelined analog-to-digital converter (ADC). Large magnitude dithers are used to measure and correct both errors simultaneously in background. In the proposed calibration system, the 2.5-bit capacitor-flip-over multiplying digital-to-analog converter (MDAC) stage is modified for the injection of large magnitude dithering by adding six additional comparators, and thus only three correction parameters in every stage subjected to correction were measured and extracted by a simple calibration algorithm with multibit first stage. Behavioral simulation results show that, using the proposed calibration technique, the signal-to-noise-and-distortion ratio improves from 63.3 to 79.3dB and the spurious-free dynamic range is increased from 63.9 to 96.4dB after calibrating the first two stages, in a 14-bit 100-MS/s pipelined ADC with σ=0.2% capacitor mismatches and 60dB nonideal opamp gain. The time of calibrating the first two stages is around 1.34 seconds for the modeled ADC.

  • A 12-bit Interpolated Pipeline ADC Using Body Voltage Controlled Amplifier

    Hyunui LEE  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER-Circuit Design

      Vol:
    E96-A No:12
      Page(s):
    2508-2515

    This paper presents a 12-bit interpolated pipeline analog to digital converter (ADC) using body voltage controlled amplifier for current biasing and common mode feedback (CMFB). The proposed body voltage control method allows the amplifier to achieve small power consumption and large output swing. The proposed amplifier has a power consumption lower than 15.6mW, almost half of the folded cascode amplifier satisfying 12-bit, 400MS/s ADC operation. Moreover, the proposed amplifier secures 600mV output swing, which is one drain source voltage (VDS) wider compared with the telescopic amplifier. The 12-bit interpolated pipeline ADC using the proposed amplifier is fabricated in a 1P9M 90nm CMOS technology with a 1.2V supply voltage. The ADC achieves an effective number of bit (ENOB) of about 10-bit at 300MS/s and an figure of merit (FoM) of 0.2pJ/conv. when the frequency of the input signal is sufficiently low.

  • Design of Interpolated Pipeline ADC Using Low-Gain Open-Loop Amplifiers

    Hyunui LEE  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    838-849

    This paper describes the design of an interpolated pipeline analog-to-digital converter (ADC). By introducing the interpolation technique into the conventional pipeline topology, it becomes possible to realize a more than 10-bits resolution and several hundred MS/s ADC using low-gain open-loop amplifiers without any multiplying digital-to-analog converter (MDAC) calibration. In this paper, linearity requirement of the amplifier is analyzed with the relation of reference range and stage resolution first. Noise characteristic is also discussed with amplifier's noise bandwidth and load capacitance. After that, sampling speed and SNR characteristic are examined with various amplifier currents. Next, the resolution optimization of the pipeline stage is discussed based on the power consumption. Through the analysis, reasonable parameters for the amplifier can be defined, such as transconductance, source degeneration resistance and load capacitance. Also, optimized operating speed and stage resolution for interpolated pipelined ADC is shown. The analysis in this paper is valuable to both the design of interpolated pipeline ADCs and other circuits which incorporate interpolation and amplifiers.

  • An 8-Bit 100-kS/s CMOS Single-Ended SA ADC for 88 Point EEG/MEG Acquisition System

    Ji-Hun EO  Yeon-Ho JEONG  Young-Chan JANG  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    453-458

    An 8-bit 100-kS/s successive approximation (SA) analog-to-digital converter (ADC) is proposed for measuring EEG and MEG signals in an 88 point. The architectures of a SA ADC with a single-ended analog input and a split-capacitor-based digital-to-analog converter (SC-DAC) are used to reduce the power consumption and chip area of the entire ADC. The proposed SA ADC uses a time-domain comparator that has an input offset self-calibration circuit. It also includes a serial output interface to support a daisy channel that reduces the number of channels for the multi-point sensor interface. It is designed by using a 0.35-µm 1-poly 6-metal CMOS process with a 3.3 V supply to implement together with a conventional analog circuit such as a low-noise-amplifier. The measured DNL and INL of the SA ADC are +0.63/-0.46 and +0.46/-0.51 LSB, respectively. The SNDR is 48.39 dB for a 1.11 kHz analog input signal at a sampling rate of 100 kS/s. The power consumption and core area are 38.71 µW and 0.059 mm2, respectively.

  • A 6 bit, 7 mW, 700 MS/s Subranging ADC Using CDAC and Gate-Weighted Interpolation

    Hyunui LEE  Yusuke ASADA  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    422-433

    A 6-bit, 7 mW, 700 MS/s subranging ADC using Capacitive DAC (CDAC) and gate-weighted interpolation fabricated in 90 nm CMOS technology is demonstrated. CDACs are used as a reference selection circuit instead of resistive DACs (RDAC) for reducing settling time and power dissipation. A gate-weighted interpolation scheme is also incorporated to the comparators, to reduce the circuit components, power dissipation and mismatch of conversion stages. By virtue of recent technology scaling, an interpolation can be realized in the saturation region with small error. A digital offset calibration technique using capacitor reduces comparator's offset voltage from 10 mV to 1.5 mV per sigma. Experimental results show that the proposed ADC achieves a SNDR of 34 dB with calibration and FoM is 250 fJ/conv., which is very attractive as an embedded IP for low power SoCs.

  • A 4–10 bit, 0.4–1 V Power Supply, Power Scalable Asynchronous SAR-ADC in 40 nm-CMOS with Wide Supply Voltage Range SAR Controller

    Akira SHIKATA  Ryota SEKIMOTO  Kentaro YOSHIOKA  Tadahiro KURODA  Hiroki ISHIKURO  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    443-452

    This paper presents a wide range in supply voltage, resolution, and sampling rate asynchronous successive approximation register (SAR) analog-to-digital converter (ADC). The proposed differential flip-flop in SAR logic and high efficiency wide range delay element extend the flexibility of speed and resolution tradeoff. The ADC fabricated in 40 nm CMOS process covers 4–10 bit resolution and 0.4–1 V power supply range. The ADC achieved 49.8 dB SNDR and the peak FoM of 3.4 fJ/conv. with 160 kS/sec at 0.4 V single power supply voltage. At 10 bit mode and 1 V operation, up to 10 MS/s, the FoM is below 10 fJ/conv. while keeping ENOB of 8.7 bit.

  • A Low-Cost Bit-Error-Rate BIST Circuit for High-Speed ADCs Based on Gray Coding

    Ya-Ting SHYU  Ying-Zu LIN  Rong-Sing CHU  Guan-Ying HUANG  Soon-Jyh CHANG  

     
    PAPER-Analog Signal Processing

      Vol:
    E95-A No:12
      Page(s):
    2415-2423

    Real-time on-chip measurement of bit error rate (BER) for high-speed analog-to-digital converters (ADCs) does not only require expensive multi-port high-speed data acquisition equipment but also enormous post-processing. This paper proposes a low-cost built-in-self-test (BIST) circuit for high-speed ADC BER test. Conventionally, the calculation of BER requires a high-speed adder. The presented method takes the advantages of Gray coding and only needs simple logic circuits for BER evaluation. The prototype of the BIST circuit is fabricated along with a 5-bit high-speed flash ADC in a 90-nm CMOS process. The active area is only 90 µm 70 µm and the average power consumption is around 0.3 mW at 700 MS/s. The measurement of the BIST circuit shows consistent results with the measurement by external data acquisition equipment.

  • Cumulative Differential Nonlinearity Testing of ADCs

    Hungkai CHEN  Yingchieh HO  Chauchin SU  

     
    PAPER-Measurement Technology

      Vol:
    E95-A No:10
      Page(s):
    1768-1775

    This paper proposes a cumulative DNL (CDNL) test methodology for the BIST of ADCs. It analyzes the histogram of the DNL of a predetermined k LSBs distance to determine the DNL and gain error. The advantage of this method over others is that the numbers of required code bins and required samples are significantly reduced. The simulation and measurements of a 12-bit ADC show that the proposed CDNL has an error of less than 5% with only 212 samples, which can only be achieved with 222 samples using the conventional method. It only needs 16 registers to store code bins in this experiment.

1-20hit(51hit)