The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] arc(1309hit)

521-540hit(1309hit)

  • A Secure and Scalable Rekeying Mechanism for Hierarchical Wireless Sensor Networks

    Song GUO  An-Ni SHEN  Minyi GUO  

     
    INVITED PAPER

      Vol:
    E93-D No:3
      Page(s):
    421-429

    Many applications of wireless sensor networks (WSNs) require secure group communications. The WSNs are normally operated in unattended, harsh, or hostile environment. The adversaries may easily compromise some sensor nodes and abuse their shared keys to inject false sensing reports or modify the reports sent by other nodes. Once a malicious node is detected, the group key should be renewed immediately for the network security. Some strategies have been proposed to develop the group rekeying protocol, but most of existing schemes are not suitable for sensor networks due to their high overhead and poor scalability. In this paper, we propose a new group rekeying protocol for hierarchical WSNs with renewable network devices. Compared with existing schemes, our rekeying method possesses the following features that are particularly beneficial to the resource-constrained large-scale WSNs: (1) robustness to the node capture attack, (2) reactive rekeying capability to malicious nodes, and (3) low communication and storage overhead.

  • Self-Organization Based Network Architecture for New Generation Networks Open Access

    Naoki WAKAMIYA  Masayuki MURATA  

     
    INVITED LETTER

      Vol:
    E93-B No:3
      Page(s):
    458-461

    A new generation network is requested to accommodate an enormous number of heterogeneous nodes and a wide variety of traffic and applications. To achieve higher scalability, adaptability, and robustness than ever before, in this paper we present new network architecture composed of self-organizing entities. The architecture consists of the physical network layer, service overlay network layer, and common network layer mediating them. All network entities, i.e. nodes and networks, behave in a self-organizing manner, where the global behavior emerges through their operation on local information and direct and/or indirect mutual interaction. The center of the architecture is so-called self-organization engines, which implement nonlinear self-organizing dynamics originating in biology, physics, and mathematics. In this paper, we also show some examples of self-organization engines.

  • A VLSI Architecture for Output Probability Computations of HMM-Based Recognition Systems with Store-Based Block Parallel Processing

    Kazuhiro NAKAMURA  Masatoshi YAMAMOTO  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER-VLSI Systems

      Vol:
    E93-D No:2
      Page(s):
    300-305

    In this paper, a fast and memory-efficient VLSI architecture for output probability computations of continuous Hidden Markov Models (HMMs) is presented. These computations are the most time-consuming part of HMM-based recognition systems. High-speed VLSI architectures with small registers and low-power dissipation are required for the development of mobile embedded systems with capable human interfaces. We demonstrate store-based block parallel processing (StoreBPP) for output probability computations and present a VLSI architecture that supports it. When the number of HMM states is adequate for accurate recognition, compared with conventional stream-based block parallel processing (StreamBPP) architectures, the proposed architecture requires fewer registers and processing elements and less processing time. The processing elements used in the StreamBPP architecture are identical to those used in the StoreBPP architecture. From a VLSI architectural viewpoint, a comparison shows the efficiency of the proposed architecture through efficient use of registers for storing input feature vectors and intermediate results during computation.

  • Optical Access Architecture Designs Based on WDM-Direct toward New Generation Networks Open Access

    Takaya MIYAZAWA  Hiroaki HARAI  

     
    INVITED PAPER

      Vol:
    E93-B No:2
      Page(s):
    236-245

    We present our proposed designs of optical access architecture based on WDM technology toward new-generation networks for two types of topologies: Single-star (SS) and passive-double-star (PDS). We adopt the concept of WDM-direct which links multiple wavelengths to each optical network unit (ONU). Our proposed architecture based on WDM-direct can achieve more than 10 Gbps access per ONU. Moreover, our architecture can provide not only conventional bandwidth-shared services but also bandwidth-guaranteed services requiring more than 10 Gbps bandwidth by establishing end-to-end lightpaths directly to each ONU, and thus meet high requirements of QoS in new-generation networks. Firstly, we show our proposed designs of SS-type architecture, and experimentally demonstrate the system. We confirm that the optical line terminal (OLT) successfully switches between packet/lightpath data transmissions for each ONU. In addition, we measure and evaluate optical power loss in upstream/downstream transmissions between the OLT and ONUs. Secondly, we show our proposed designs of PDS-type architecture, and theoretically analyze and evaluate the bit-rate capacity of the system.

  • Noise-Coupled Image Rejection Architecture of Complex Bandpass ΔΣAD Modulator

    Hao SAN  Haruo KOBAYASHI  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    390-394

    This paper proposes a new realization technique of image rejection function by noise-coupling architecture, which is used for a complex bandpass ΔΣAD modulator. The complex bandpass ΔΣAD modulator processes just input I and Q signals, not image signals, and the AD conversion can be realized with low power dissipation. It realizes an asymmetric noise-shaped spectra, which is desirable for such low-IF receiver applications. However, the performance of the complex bandpass ΔΣAD modulator suffers from the mismatch between internal analog I and Q paths. I/Q path mismatch causes an image signal, and the quantization noise of the mirror image band aliases into the desired signal band, which degrades the SQNDR (Signal to Quantization Noise and Distortion Ratio) of the modulator. In our proposed modulator architecture, an extra notch for image rejection is realized by noise-coupled topology. We just add some passive capacitors and switches to the modulator; the additional integrator circuit composed of an operational amplifier in the conventional image rejection realization is not necessary. Therefore, the performance of the complex modulator can be effectively raised without additional power dissipation. We have performed simulation with MATLAB to confirm the validity of the proposed architecture. The simulation results show that the proposed architecture can achieve the realization of image-rejection effectively, and improve the SQNDR of the complex bandpass ΔΣAD modulator.

  • High-Speed Passphrase Search System for PGP

    Koichi SHIMIZU  Daisuke SUZUKI  Toyohiro TSURUMARU  

     
    PAPER-Application

      Vol:
    E93-A No:1
      Page(s):
    202-209

    We propose an FPGA-based high-speed search system for cryptosystems that employ a passphrase-based security scheme. We first choose PGP as an example of such cryptosystems, clear several hurdles for high throughputs and manage to develop a high-speed search system for it. As a result we achieve a throughput of 1.1 105 passphrases per second, which is 38 times the speed of the fastest software. Furthermore we can do many flexible passphrase generations in addition to a simple brute force one because we assign the passphrase generation operation to software. In fact we implement a brute force and a dictionary-based ones, and get the same maximum throughput as above in both cases. We next consider the speed of passphrase generation in order to apply our system to other cryptosystems than PGP, and implement a hardware passphrase generator to achieve higher throughputs. In the PGP case, the very heavy iteration of hashing, 1025 times in our case, lowers the total throughput linearly, and makes the figure 1.1 105 suffice. In other cases without any such iteration structure, we have to generate even more passphrases, for example 108 per second. That can easily exceed the generation speed that software can offer and thus we conclude that it is now necessary to place the passphrase generation in hardware instead of in software.

  • A Hierarchical Preamble Design Technique for Efficient Handovers in OFDM-Based Multi-Hop Relay Systems

    Hyun-Il YOO  Young-Jun KIM  Kyung-Soo WOO  Jaekwon KIM  Sangboh YUN  Yong-Soo CHO  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E92-B No:12
      Page(s):
    3907-3910

    In this paper, a new handover procedure for OFDM-based multi-hop relay systems is proposed to reduce handover overhead by distinguishing an inter-cell handover event from an intra-cell handover event at the level of the physical layer using a preamble with a hierarchical design. A Subcell ID concept used to identify relay station in a cell is proposed in the hierarchical design that works in conjunction with the existing Cell ID used to identify base station. The proposed handover procedure can simplify the scanning procedure and skip/simplify the network re-entry procedure, resulting in a significant reduction in handover overhead.

  • Filter Size Determination of Moving Average Filters for Extended Differential Detection of OFDM Preambles

    Minjoong RIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3953-3956

    OFDM (Orthogonal Frequency Division Multiplexing) is widely used in wideband wireless communication systems due to its excellent performance. One of the most important operations in OFDM receivers is preamble detection. This paper addresses a general form of extended differential detection methods, which is a combination of differential detection and a moving average filter. This paper also presents a filter size determination method that achieves satisfactory performance in various channel environments.

  • Constrained Stimulus Generation with Self-Adjusting Using Tabu Search with Memory

    Yanni ZHAO  Jinian BIAN  Shujun DENG  Zhiqiu KONG  Kang ZHAO  

     
    PAPER-Logic Synthesis, Test and Verfication

      Vol:
    E92-A No:12
      Page(s):
    3086-3093

    Despite the growing research effort in formal verification, industrial verification often relies on the constrained random simulation methodology, which is supported by constraint solvers as the stimulus generator integrated within simulator, especially for the large design with complex constraints nowadays. These stimulus generators need to be fast and well-distributed to maintain simulation performance. In this paper, we propose a dynamic method to guide stimulus generation by SAT solvers. An adjusting strategy named Tabu Search with Memory (TSwM) is integrated in the stimulus generator for the search and prune processes along with the constraint solver. Experimental results show that the method proposed in this paper could generate well-distributed stimuli with good performance.

  • Floorplan-Aware High-Level Synthesis for Generalized Distributed-Register Architectures

    Akira OHCHI  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E92-A No:12
      Page(s):
    3169-3179

    As device feature size decreases, interconnection delay becomes the dominating factor of circuit total delay. Distributed-register architectures can reduce the influence of interconnection delay. They may, however, increase circuit area because they require many local registers. Moreover original distributed-register architectures do not consider control signal delay, which may be the bottleneck in a circuit. In this paper, we propose a high-level synthesis method targeting generalized distributed-register architecture in which we introduce shared/local registers and global/local controllers. Our method is based on iterative improvement of scheduling/binding and floorplanning. First, we prepare shared-register groups with global controllers, each of which corresponds to a single functional unit. As iterations proceed, we use local registers and local controllers for functional units on a critical path. Shared-register groups physically located close to each other are merged into a single group. Accordingly, global controllers are merged. Finally, our method obtains a generalized distributed-register architecture where its scheduling/binding as well as floorplanning are simultaneously optimized. Experimental results show that the area is decreased by 4.7% while maintaining the performance of the circuit equal with that using original distributed-register architectures.

  • Tag-Annotated Text Search Using Extended Region Algebra

    Katsuya MASUDA  Jun'ichi TSUJII  

     
    PAPER-Information Retrieval

      Vol:
    E92-D No:12
      Page(s):
    2369-2377

    This paper presents algorithms for searching text regions with specifying annotated information in tag-annotated text by using Region Algebra. The original algebra and its efficient algorithms are extended to handle both nested regions and crossed regions. The extensions are necessary for text search by using rich linguistic annotations. We first assign a depth number to every nested tag region to order these regions and write efficient algorithms using the depth number for the containment operations which can treat nested tag regions. Next, we introduce variables for attribute values of tags into the algebra to treat annotations in which attributes indicate another tag regions, and propose an efficient method of treating re-entrancy by incrementally determining values for variables. Our algorithms have been implemented in a text search engine for MEDLINE, which is a large textbase of abstracts in medical science. Experiments in tag-annotated MEDLINE abstracts demonstrate the effectiveness of specifying annotations and the efficiency of our algorithms. The system is made publicly accessible at http://www-tsujii.is.s.u-tokyo.ac.jp/medie/.

  • Energy-Efficient Pre-Execution Techniques in Two-Step Physical Register Deallocation

    Kazunaga HYODO  Kengo IWAMOTO  Hideki ANDO  

     
    PAPER-Computer Systems

      Vol:
    E92-D No:11
      Page(s):
    2186-2195

    Instruction pre-execution is an effective way to prefetch data. We previously proposed an instruction pre-execution scheme, which we call two-step physical register deallocation (TSD). The TSD realizes pre-execution by exploiting the difference between the amount of instruction-level parallelism available with an unlimited number of physical registers and that available with an actual number of physical registers. Although previous TSD study has successfully improved performance, it still has an inefficient energy consumption. This is because attempts are made for instructions to be pre-executed as much as possible, independently of whether or not they can significantly contribute to load latency reduction, allowing for maximal performance improvement. This paper presents a scheme that improves the energy efficiency of the TSD by pre-executing only those instructions that have great benefit. Our evaluation results using the SPECfp2000 benchmark show that our scheme reduces the dynamic pre-executed instruction count by 76%, compared with the original scheme. This reduction saves 7% energy consumption of the execution core with 2% overhead. Performance degrades by 2%, compared with that of the original scheme, but is still 15% higher than that of the normal processor without the TSD.

  • Multi-Hierarchical Modeling of Driving Behavior Using Dynamics-Based Mode Segmentation

    Hiroyuki OKUDA  Tatsuya SUZUKI  Ato NAKANO  Shinkichi INAGAKI  Soichiro HAYAKAWA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2763-2771

    This paper presents a new hierarchical mode segmentation of the observed driving behavioral data based on the multi-level abstraction of the underlying dynamics. By synthesizing the ideas of a feature vector definition revealing the dynamical characteristics and an unsupervised clustering technique, the hierarchical mode segmentation is achieved. The identified mode can be regarded as a kind of symbol in the abstract model of the behavior. Second, the grammatical inference technique is introduced to develop the context-dependent grammar of the behavior, i.e., the symbolic dynamics of the human behavior. In addition, the behavior prediction based on the obtained symbolic model is performed. The proposed framework enables us to make a bridge between the signal space and the symbolic space in the understanding of the human behavior.

  • Adaptive Sub-Sampling Based Reconfigurable SAD Tree Architecture for HDTV Application

    Yiqing HUANG  Qin LIU  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER-Video Coding

      Vol:
    E92-A No:11
      Page(s):
    2819-2829

    This paper presents a reconfigurable SAD Tree (RSADT) architecture based on adaptive sub-sampling algorithm for HDTV application. Firstly, to obtain the the feature of HDTV picture, pixel difference analysis is applied on each macroblock (MB). Three hardware friendly sub-sampling patterns are selected adaptively to release complexity of homogeneous MB and keep video quality for texture MB. Secondly, since two pipeline stages are inserted, the whole clock speed of RSADT structure is enhanced. Thirdly, to solve data reuse and hardware utilization problem of adaptive algorithm, the RSADT structure adopts pixel data organization in both memory and architecture level, which leads to full data reuse and hardware utilization. Additionally, a cross reuse structure is proposed to efficiently generate 16 pixel scaled configurable SAD (sum of absolute difference). Experimental results show that, our RSADT architecture can averagely save 61.71% processing cycles for integer motion estimation engine and accomplish twice or four times processing capability for homogeneous MBs. The maximum clock frequency of our design is 208 MHz under TSMC 0.18 µm technology in worst work conditions(1.62 V, 125C). Furthermore, the proposed algorithm and reconfigurable structure are favorable to power aware real-time encoding system.

  • Adaptive Group Detection Based on the Sort-Descending QR Decomposition for V-BLAST Architectures

    Xiaorong JING  Tianqi ZHANG  Zhengzhong ZHOU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:10
      Page(s):
    3263-3266

    Combining the sphere decoding (SD) algorithm and the sequential detection method, we propose an adaptive group detection (AGD) scheme based on the sort-descending QRD (S-D-QRD) for V-BLAST architectures over an i.i.d. Rayleigh flat fading channel. Simulation results show that the proposed scheme, which encompasses the SD algorithm and the sequential detection method as two extreme cases in a probability sense, can achieve a very flexible tradeoff between the detection performance and computational complexity by adjusting the group parameter.

  • A Decentralized VPN Service over Generalized Mobile Ad-Hoc Networks

    Sho FUJITA  Keiichi SHIMA  Yojiro UO  Hiroshi ESAKI  

     
    PAPER-Network Architecture and Testbed

      Vol:
    E92-D No:10
      Page(s):
    1897-1904

    We present a decentralized VPN service that can be built over generalized mobile ad-hoc networks (Generalized MANETs), in which topologies can be represented as a time-varying directed multigraph. We address wireless ad-hoc networks and overlay ad-hoc networks as instances of Generalized MANETs. We first propose an architecture to operate on various kinds of networks through a single set of operations. Then, we design and implement a decentralized VPN service on the proposed architecture. Through the development and operation of a prototype system we implemented, we found that the proposed architecture makes the VPN service applicable to each instance of Generalized MANETs, and that the VPN service makes it possible for unmodified applications to operate on the networks.

  • Resource Minimization Method Satisfying Delay Constraint for Replicating Large Contents

    Sho SHIMIZU  Hiroyuki ISHIKAWA  Yutaka ARAKAWA  Naoaki YAMANAKA  Kosuke SHIBA  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E92-B No:10
      Page(s):
    3102-3110

    How to minimize the number of mirroring resources under a QoS constraint (resource minimization problem) is an important issue in content delivery networks. This paper proposes a novel approach that takes advantage of the parallelism of dynamically reconfigurable processors (DRPs) to solve the resource minimization problem, which is NP-hard. Our proposal obtains the optimal solution by running an exhaustive search algorithm suitable for DRP. Greedy algorithms, which have been widely studied for tackling the resource minimization problem, cannot always obtain the optimal solution. The proposed method is implemented on an actual DRP and in experiments reduces the execution time by a factor of 40 compared to the conventional exhaustive search algorithm on a Pentium 4 (2.8 GHz).

  • Acceleration of Genetic Programming by Hierarchical Structure Learning: A Case Study on Image Recognition Program Synthesis

    Ukrit WATCHAREERUETAI  Tetsuya MATSUMOTO  Noboru OHNISHI  Hiroaki KUDO  Yoshinori TAKEUCHI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E92-D No:10
      Page(s):
    2094-2102

    We propose a learning strategy for acceleration in learning speed of genetic programming (GP), named hierarchical structure GP (HSGP). The HSGP exploits multiple learning nodes (LNs) which are connected in a hierarchical structure, e.g., a binary tree. Each LN runs conventional evolutionary process to evolve its own population, and sends the evolved population into the connected higher-level LN. The lower-level LN evolves the population with a smaller subset of training data. The higher-level LN then integrates the evolved population from the connected lower-level LNs together, and evolves the integrated population further by using a larger subset of training data. In HSGP, evolutionary processes are sequentially executed from the bottom-level LNs to the top-level LN which evolves with the entire training data. In the experiments, we adopt conventional GPs and the HSGPs to evolve image recognition programs for given training images. The results show that the use of hierarchical structure learning can significantly improve learning speed of GPs. To achieve the same performance, the HSGPs need only 30-40% of the computation cost needed by conventional GPs.

  • Identifying Processor Bottlenecks in Virtual Machine Based Execution of Java Bytecode

    Pradeep RAO  Kazuaki MURAKAMI  

     
    PAPER

      Vol:
    E92-C No:10
      Page(s):
    1265-1275

    Despite the prevalence of Java workloads across a variety of processor architectures, there is very little published data on the impact of the various processor design decisions on Java performance. We attribute the lack of data to the large design space resulting from the complexity of the modern superscalar processor and the additional complexities associated with executing Java bytecode using a virtual machine. To address this shortcoming, we use a statistically rigorous methodology to systematically quantify the the impact of the various processor microarchitecture parameters on Java execution performance. The adopted methodology enables efficient screening of significant factor effects in a large design space consisting of 35 factors (32-billion potential configurations) using merely 72 observations per benchmark application. We quantify and tabulate the significance of each of the 35 factors for 13 benchmark applications. While these tables provide various insights into Java performance, they consistently highlight the performance significance of the instruction delivery mechanism, especially the instruction cache and the ITLB design parameters. Furthermore, these tables enable the architect to identify processor bottlenecks for Java workloads by providing an estimate of the relative impact of various design decisions.

  • A Novel Bandelet-Based Image Inpainting

    Kuo-Ming HUNG  Yen-Liang CHEN  Ching-Tang HSIEH  

     
    PAPER-Image Coding and Processing

      Vol:
    E92-A No:10
      Page(s):
    2471-2478

    This paper proposes a novel image inpainting method based on bandelet transform. This technique is based on a multi-resolution layer to perform image restoration, and mainly utilizes the geometrical flow of the neighboring texture of the damaged regions as the basis of restoration. By performing the warp transform with geometrical flows, it transforms the textural variation into the nearing domain axis utilizing the bandelet decomposition method to decompose the non-relative textures into different bands, and then combines them with the affine search method to perform image restoration. The experimental results show that the proposed method can simplify the complexity of the repair decision method and improve the quality of HVS, and thus, repaired results to contain the image of contour of high change, and in addition, offer a texture image of high-frequency variation. These repair results can lead to state-of-the-art results.

521-540hit(1309hit)