The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] array(959hit)

781-800hit(959hit)

  • Design Optimization of VLSI Array Processor Architecture for Window Image Processing

    Dongju LI  Li JIANG  Hiroaki KUNIEDA  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1475-1484

    In this paper, we present a novel architecture named as Window-MSPA architecture which targets to window operations in image processing. We have previously developed a Memory Sharing Processor Array (MSPA) for fast array processing with regular iterative algorithms. Window-MSPA tries to optimize the data I/O ports and the number of processing elements so as to reduce hardware cost. The input scheme of image data is restricted to row by row input which simplifies the I/O architecture. Under this practical I/O restriction, the fastest processings are achieved. In this paper, we present the general Window-MSPA design methodology for wide variety of applications. As an practical application, we have already reported the design of MP@HL MPEG2 Motion Estimator LSI. Design formulas for Window-MSPA architecture are given for various size of window operations in image processing. Thus, the derived architecture is flexible enough to satisfy user's requirement for either area or speed.

  • Speech Enhancement Using Nonlinear Microphone Array Based on Complementary Beamforming

    Hiroshi SARUWATARI  Shoji KAJITA  Kazuya TAKEDA  Fumitada ITAKURA  

     
    PAPER

      Vol:
    E82-A No:8
      Page(s):
    1501-1510

    This paper describes a spatial spectral subtraction method by using the complementary beamforming microphone array to enhance noisy speech signals for speech recognition. The complementary beamforming is based on two types of beamformers designed to obtain complementary directivity patterns with respect to each other. In this paper, it is shown that the nonlinear subtraction processing with complementary beamforming can result in a kind of the spectral subtraction without the need for speech pause detection. In addition, the optimization algorithm for the directivity pattern is also described. To evaluate the effectiveness, speech enhancement experiments and speech recognition experiments are performed based on computer simulations under both stationary and nonstationary noise conditions. In comparison with the optimized conventional delay-and-sum (DS) array, it is shown that: (1) the proposed array improves the signal-to-noise ratio (SNR) of degraded speech by about 2 dB and performs more than 20% better in word recognition rates under the conditions that the white Gaussian noise with the input SNR of -5 or -10 dB is used, (2) the proposed array performs more than 5% better in word recognition rates under the nonstationary noise conditions. Also, it is shown that these improvements of the proposed array are same as or superior to those of the conventional spectral subtraction method cascaded with the DS array.

  • Investigations of Radiation Characteristics of a Circularly Polarized Conical Beam Spherical Slot Array Antenna

    Chuwong PHONGCHAROENPANICH  Monai KRAIRIKSH  Jun-ichi TAKADA  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1242-1247

    This paper presents the radiation characteristics of a circularly polarized conical beam spherical slot array antenna for applying to the mobile satellite communication subscriber. The structure of the antenna is easy to fabricate i. e. , a ring of perpendicular slot pairs cut on an outer surface of a concentric conducting spherical cavity enclosed by the conducting conical surface with the simple feeding structure, and a linear electric probe excited at the center of the inner surface of the cavity. Radiation fields of a spherical slot array antenna are calculated by superposing the patterns of all the slots. From the numerical results of the radiation pattern, in both elevational and azimuthal planes, it is obvious that the conical beam is realized. The elevational beam direction is low, which is suitable for installing in the land mobile subscriber unit located far from the equator. The tracking system is not necessary because the azimuthal pattern is omnidirectional. Directivity of the antenna for various spherical radii and angles of slot positions are illustrated as the guidelines for the design. Experimental results are in good agreement with the predictions.

  • New Design Approach to Multiple-Beam Forming Network for Beam-Steerable Phased Array Antennas

    Fumio KIRA  Kenji UENO  Takashi OHIRA  Hiroyo OGAWA  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1195-1201

    The onboard antenna beam forming network (BFN) of the next-generation communication satellites must offer multiple beam forming and beam steering. The conventional BFN, which directly controls the array elements, is not suitable for a large-scale array antenna because of the difficulty of BFN control. This paper proposes a new BFN configuration that consists of three/four-way variable power dividers and a Butler matrix (FFT circuit). This BFN can offer continuous beam steering with fewer variable components. By introducing new techniques based upon excluding FFT periods and power evaluations by definite integration, the deviation in beamwidth is reduced by 75% or more and the maximum sidelobe level is improved by 10 dB or more.

  • Slot-Array Receiving Antennas Fed by Coplanar Waveguide for 700 GHz Submillimeter-Wave Radiation

    Hiroaki KOBAYASHI  Yasuhiko ABE  Yoshizumi YASUOKA  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1248-1252

    Thin-film slot-array receiving antennas fed by coplanar waveguide (CPW) were fabricated on fused quartz substrates, and the antenna properties were investigated at 700 GHz. It was confirmed that the transmission efficiency of CPW was 0.83/λm, and the rate of radiated power from a slot antenna was 0.5 at 700 GHz. The fabricated antennas worked as expected from the theory based on the transmission line model, and the two-dimensional 83 slot-array antenna fed by CPW increased the power gain by 11 dB over a single-slot antenna. The power gain of the antenna was 13 dBi and the aperture efficiency was 40% when the 700 GHz-submillimeter wave was irradiated through the substrate.

  • Dynamic Channel Assignment Algorithms with Adaptive Array Antennas in Cellular Systems

    Lan CHEN  Hidekazu MURATA  Susumu YOSHIDA  Shouichi HIROSE  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1202-1209

    In this paper, the performance of dynamic channel assignment for cellular systems with an array antenna is evaluated assuming realistic beamformer. A new dynamic channel assignment algorithm is proposed to improve the performance by forming a directional beam pattern to cancel stronger co-channel interference with higher priority. Performance comparison is carried out by computer simulations. Conventional algorithm shows 2.7 fold capacity increase compared with an omni antenna system, whereas proposed algorithm shows around 3.3 fold capacity increase, at the point of 3 percent blocking probability. The simulation results also denote that a shorter reuse distance can be achieved by the proposed algorithm, which indicates a more efficient utilization of channel resource.

  • The Feasibility Study of the Dynamic Zone Configuration Technique with a Developed Circular Array Antenna

    Ami KANAZAWA  Hiroshi HARADA  Tsukasa IWAMA  Yoshihiro HASE  

     
    PAPER

      Vol:
    E82-A No:7
      Page(s):
    1210-1222

    The feasibility of a dynamic zone configuration technique has been investigated. To make it easy to implement this technique in wireless communication systems, a simplified method for determining a suitable weight vector by using the least squares (LS) methods was developed. Simulations showed that the developed system is more effective than the present omni-directional zone system. Moreover, combining dynamic zone configuration technique with dynamic channel assignment strategy reduced blocking rate, forced call termination ratio, and required transmission power.

  • Wide Angle Phase-Shifterless Beam Scanning in Unilaterally Coupled Active Antenna Arrays

    Ragip ISPIR  Shigeji NOGI  Minoru SANAGI  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1188-1194

    In coupled oscillator arrays, it is possible to control the inter-element phase shift up to 180 by free-running frequency distribution based on injection-locking phenomenon. In this paper, a new technique to control the inter-element phase shift electronically up to the maximum extent of 360 is reported. Oscillators are unilaterally coupled to the preceding oscillator through one of the two paths, which differ from each other 180 in electrical length and each includes an amplifier. Turning on the desired amplifier one can control the phase shift either -180 to 0 or 0 to 180. The technique was applied in a three-element oscillator array each coupled to a patch antenna via a round aperture. The radiation beam of the array could be scanned 47 in total.

  • Spatial Power Combining and Phased-Array Behavior of Circularly Polarized Active Patch Antennas

    Tomomichi KAGAWA  Shigeji NOGI  Minoru SANAGI  

     
    PAPER-Phased Arrays and Antennas

      Vol:
    E82-C No:7
      Page(s):
    1182-1187

    Design of circularly polarized active antennas of dual-fed square patch type is given, and spatial power combining and phased array operation of the antennas have been successfully achieved. In a phased array experiment of the arrays with two and three active antennas by the method of varying their free-running oscillation frequencies, we obtained the scan angles from -12 to +13 and those from -13 to +13, respectively, and good axial ratios together with high spatial power-combining efficiencies.

  • New Design Method of a Binaural Microphone Array Using Multiple Constraints

    Yoiti SUZUKI  Shinji TSUKUI  Futoshi ASANO  Ryouichi NISHIMURA  Toshio SONE  

     
    PAPER

      Vol:
    E82-A No:4
      Page(s):
    588-596

    A new method of designing a microphone array with two outputs preserving binaural information is proposed in this paper. This system employs adaptive beamforming using multiple constraints. The binaural cues may be preserved in the two outputs by use of these multiple constraints with simultaneous beamforming to enhance target signals is also available. A computer simulation was conducted to examine the performance of the beamforming. The results showed that the proposed array can perform both the generation of the binaural cues and the beamforming as intended. In particular, beamforming with double-constraints exhibits the best performance; DI is around 7 dB and good interchannel (interaural) time/phase and level differences are generated within a target region in front. With triple-constraints, however, the performance of the beamforming becomes poorer while the binaural information is better realized. Setting of the desired responses to give proper binaural information seems to become critical as the number of the constraints increases.

  • Realization of Wide-Band Directivity with Three Microphones

    Masataka NAKAMURA  Katsuhito KOUNO  Toshitaka YAMATO  Kazuhiro SAKIYAMA  

     
    PAPER

      Vol:
    E82-A No:4
      Page(s):
    619-625

    In order that the speech recognition system might have a high performance in the noisy environment, the directional microphone arrays at the input of the system have been broadly investigated. The purpose of this study is to develop a new wide-band directional microphone system in view of advancing to an adaptive one afterwards. In the proposed system, three microphones are arranged on a straight line and the beamforming is accomplished in such a way that the output value of the middle microphone is added to the integrated value of the difference between two microphones at both sides. In this study, the signal processing of microphone outputs is implemented by using active RC circuits. Finally, the objective directivity can be experimentally obtained in wide frequency ranges required for the speech recognition.

  • A Robust Adaptive Beamformer with a Blocking Matrix Using Coefficient-Constrained Adaptive Filters

    Osamu HOSHUYAMA  Akihiko SUGIYAMA  Akihiro HIRANO  

     
    PAPER-Digital Signal Processing

      Vol:
    E82-A No:4
      Page(s):
    640-647

    This paper proposes a new robust adaptive beamformer applicable to microphone arrays. The proposed beamformer is a generalized sidelobe canceller (GSC) with a variable blocking matrix using coefficient-constrained adaptive filters (CCAFs). The CCAFs, whose common input signal is the output of a fixed beamformer, minimize leakage of the target signal into the interference path of the GSC. Each coefficient of the CCAFs is constrained to avoid mistracking. In the multiple-input canceller, leaky adaptive filters are used to decrease undesirable target-signal cancellation. The proposed beamformer can allow large look-direction error with almost no degradation in interference-reduction performance and can be implemented with a small number of microphones. The maximum allowable look-direction error can be specified by the user. Simulation results show that the proposed beamformer, when designed to allow about 20of look-direction error, can suppress interference by more than 17 dB.

  • A Trinary-Phased Array

    Masaharu FUJITA  

     
    LETTER-Antennas and Propagation

      Vol:
    E82-B No:3
      Page(s):
    564-566

    A trinary-phased array, in which a phase quantization unit of phase shifters is 120 degrees is examined. The phase quantization unit of 120 degrees is the roughest value in practical phased array applications. Despite its rough phase quantization, the sidelobe level of less than -9 dB is attained by a genetic algorithm approach.

  • REMARC: Reconfigurable Multimedia Array Coprocessor

    Takashi MIYAMORI  Kunle OLUKOTUN  

     
    PAPER-Computer Hardware and Design

      Vol:
    E82-D No:2
      Page(s):
    389-397

    This paper describes a new reconfigurable processor architecture called REMARC (Reconfigurable Multimedia Array Coprocessor). REMARC is a small array processor that is tightly coupled to a main RISC processor. It consists of a global control unit and 64 16-bit processors called nano processors. REMARC is designed to accelerate multimedia applications, such as video compression, decompression, and image processing. These applications typically use 8-bit or 16-bit data therefore, each nano processor has a 16-bit datapath that is much wider than those of other reconfigurable coprocessors. We have developed a programming environment for REMARC and several realistic application programs, DES encryption, MPEG-2 decoding, and MPEG-2 encoding. REMARC can implement various parallel algorithms which appear in these multimedia applications. For instance, REMARC can implement SIMD type instructions similar to multimedia instruction extensions for motion compensation of the MPEG-2 decoding. Furthermore, the highly pipelined algorithms, like systolic algorithms, which appear in motion estimation of the MPEG-2 encoding can also be implemented efficiently. REMARC achieves speedups ranging from a factor of 2.3 to 21.2 over the base processor which is a single issue processor or 2-issue superscalar processor. We also compare its performance with multimedia instruction extensions. Using more processing resources, REMARC can achieve higher performance than multimedia instruction extensions.

  • FDTD Analysis of Mutual Coupling of Cavity-Backed Slot Antenna Array

    Takashi HIKAGE  Manabu OMIYA  Kiyohiko ITOH  

     
    PAPER

      Vol:
    E81-C No:12
      Page(s):
    1838-1844

    This paper discusses a method to evaluate mutual couplings of cavity-backed slot antennas using the FDTD technique. The antenna fed by the short-ended probe is considered, which is investigated as an element of the power transmission antenna, Spacetenna, for the solar power satellite SPS2000. It is found from the FDTD computation on E-plane two- and four-element array antennas that the size of the problem space should be larger for the evaluation of the mutual coupling than for the estimation of the input impedance. Since enlarging the size of the problem space requires a large amount of computer storage, it is not practical for computer simulations. In order to carry out accurate estimations of the mutual coupling with relatively small amount of computer memory, the problem space is extended only in the broadside of the array antenna and in the other directions there are ten cells between the antenna surface and the outer boundary. Computer simulations demonstrate that there are no differences between the results of the proposed problem space geometry and the problem space extended in each direction of the axis coordinate by the same number of cells. Furthermore comparisons of computed and experimental results demonstrate the effectiveness of the approach after discussing how large the size of the problem space is required to estimate the mutual coupling.

  • Ion Beam Modified Photoresist A New Class of Field Emitter Material for Large Area Devices

    Tanemasa ASANO  Daisuke SASAGURI  Katsuya HIGA  

     
    PAPER

      Vol:
    E81-C No:11
      Page(s):
    1715-1720

    Ion beam irradiation effects on a novolac positive-tone photoresist and its application to micron-size field emitters have been investigated. Irradiation of Ar and P ions was examined. The electrical resistivity of the photoresist film is found to decrease after Ar ion implantation at doses on the order of 1016 cm-2. Baking of the photoresist prior to irradiation at a high temperature is preferred to produce electrical conductivity. P ions show weaker effects than Ar ions. Raman spectroscopy shows that carbon-carbon bonds such as the graphite bond are produced due to ion bombardment. The field emission of electrons is observed from emitters made of the ion-irradiated photoresist. The emission current is shown to be fairly stable when it is compared with an emission characteristic of synthesized diamond. Fabrication of field emitter arrays using a mold technique is demonstrated. The field emitter array shows emission at a current level of about 40 µA.

  • Space Division Multiple Access Considerations in CDMA Cellular Systems

    Pieter van ROOYEN  Michiel P. LOTTER  

     
    INVITED PAPER

      Vol:
    E81-A No:11
      Page(s):
    2251-2260

    Space Division Multiple Access (SDMA) will form an important part of the new Wideband Code Division Multiple Access (WCDMA) standard that will realize the Universal Mobile Telephone System (UMTS). This paper addresses a few issues of importance when SDMA techniques are used in a cellular CDMA system. Firstly, a brief overview of SDMA techniques are presented followed by a theoretical analysis of a SDMA/CDMA system. The analysis is focused on a single cell, multipath Rayleigh fading scenario with imperfect power control. As system performance measure Bit Error Rate (BER) is used to investigate the influence of user location, number of antennas and power control error. An important parameter in a SDMA system is the antenna array element spacing. In our analysis a Uniform Linear Array (ULA) is considered and a measure is defined to determine the optimal antenna element spacing in a CDMA cellular environment. Normally the mobile users in a cell are assumed to be uniformly distributed in cellular performance calculations. To reflect a more realistic situation, we propose a novel probability density function for the non-uniform distribution of the mobile users in the cell. It is shown that multipath and imperfect power control, even with antenna arrays, reduces the system performance substantially.

  • Efficient Implementation of Multi-Dimensional Array Redistribution

    Minyi GUO  Yoshiyuki YAMASHITA  Ikuo NAKATA  

     
    PAPER-Sofware System

      Vol:
    E81-D No:11
      Page(s):
    1195-1204

    Array redistribution is required very often in programs on distributed memory parallel computers. It is essential to use efficient algorithms for redistribution, otherwise the performance of programs may degrade considerably. In this paper, we focus on automatic generation of communication routines for multi-dimensional redistribution. The principal advantage of this work is to gain the ability to handle redistribution between arbitrary source and destination processor sets and between arbitrary source and destination distribution schemes. We have implemented these algorithms using Parallelware communication library. Some experimental results show the efficiency and flexibility of our techniques compared to the other redistribution works.

  • Electron-Beam-Damaged YBa2Cu3O7-y Josephson Junctions for High-Frequency Device Applications

    Sang-Jae KIM  Tsutomu YAMASHITA  

     
    PAPER-High-Tc Junction Technology

      Vol:
    E81-C No:10
      Page(s):
    1544-1548

    We investigate the basic properties of focused electron beam (FEB)-damaged Josephson junctions on silicon (Si) substrates for high-frequency device applications. YBa2Cu3O7-y (YBCO) Josephson junction arrays were also fabricated by FEB irradiation to confirm the junction uniformity and to investigate their applicability. The junctions exhibit resistively shunted junction (RSJ)-like current-voltage (I-V) curves and the microwave-induced Shapiro steps for all operation temperatures. Two-junction arrays show single-junction-like behavior with the Shapiro steps in an array up to 2 mV. Microwave-induced Shapiro steps correspond to the double voltages Vn=2nVJ, where VJ=f0h/2e in two-junction arrays. The microwave power dependence of I-V curves shows the steps corresponding to the RSJ model.

  • CAM-Based Array Converter for URR Floating-Point Arithmetic

    Kuei-Ming LU  Keikichi TAMARU  

     
    PAPER-Computer Applications

      Vol:
    E81-D No:10
      Page(s):
    1120-1130

    In order to lessen overflow or underflow problem in numerical computation, several new floating-point arithmetics have been proposed. The significant advantage of these new arithmetics is that a number can be represented in a wider range since the fields of exponent and mantissa are changed depending on the magnitude of number. The main issues of these arithmetics are how to find the boundary between exponent and mantissa as well as to convert the formats between new floating-point arithmetic and fixed-point arithmetic quickly. In this paper, a CAM-based array converter based on the Universal Representation of Real number (URR) floating-point arithmetic is described. Using match retrieval device CAM, the detection of the boundary can be accomplished faster than conventional circuits. Arranging the basic cells into iterative array structure, the fast separation/connection operation is achieved. The speed, area and power consumption of the converter is estimated.

781-800hit(959hit)