The search functionality is under construction.

Keyword Search Result

[Keyword] broadband(147hit)

21-40hit(147hit)

  • Miniature Design Technique of Stabilized C-Band p-HEMT MMIC Doherty Power Amplifier with Lumped Element Load Modulator

    Tsuyoshi YOSHIDA  Yoichiro TAKAYAMA  Ryo ISHIKAWA  Kazuhiko HONJO  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1130-1139

    A broadband miniature GaAs p-HEMT MMIC Doherty power amplifier (DPA) with a series connected load operating at the C band has been developed. To minimize the circuit size, a lumped-element load modulation circuit without a quarter wavelength transmission line has been introduced to MMIC technology. For both an input and output power divider/combiner circuit, two baluns are used to reduce the length of the phase adjuster circuit without causing instability. An inherent DPA instability problem related with the degenerated sub-harmonic frequency has been analyzed with the S and T parameters of DPA circuit components, resulting in a novel stabilized circuit. The developed stabilized DPA delivered a maximum power added efficiency (PAE) of 49% and a maximum output power of 23.4dBm. Greater than 40% PAE below a 10-dB input back-off from a saturated output power is obtained for a frequency range of 6.1 to 6.8GHz.

  • A Broadband Circularly Polarized Waveguide Antenna Design for Low Cross-Polarization

    Ryoji YAMAUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/04/19
      Vol:
    E99-B No:10
      Page(s):
    2187-2194

    An L-shaped probe with a surrounding aperture such as a waveguide can generate circular polarization (CP) waves. Circular waveguide antennas using an L-shaped probe have broadband characteristics both in axial ratio (AR) and in input impedance, however cross-polarization (XPOL) is easily generated due to its asymmetrical structure resulting in a radiation pattern that has narrow CP azimuth range. In this paper, design techniques to reduce the XPOL generated from a circular waveguide antenna using an L-shaped probe are proposed. As a result, XPOL is reduced by around 10 dB, and CP is radiated over a wide angle range of 120-150° covering frequencies from 7.35 to 9.75GHz.

  • Electrically Driven Near-Infrared Broadband Light Source with Gaussian-Like Spectral Shape Based on Multiple InAs Quantum Dots

    Takuma YASUDA  Nobuhiko OZAKI  Hiroshi SHIBATA  Shunsuke OHKOUCHI  Naoki IKEDA  Hirotaka OHSATO  Eiichiro WATANABE  Yoshimasa SUGIMOTO  Richard A. HOGG  

     
    BRIEF PAPER

      Vol:
    E99-C No:3
      Page(s):
    381-384

    We developed an electrically driven near-infrared broadband light source based on self-assembled InAs quantum dots (QDs). By combining emissions from four InAs QD ensembles with controlled emission center wavelengths, electro-luminescence (EL) with a Gaussian-like spectral shape and approximately 85-nm bandwidth was obtained. The peak wavelength of the EL was blue-shifted from approximately 1230 to 1200 nm with increased injection current density (J). This was due to the state-filling effect: sequential filling of the discrete QD electron/hole states by supplied carriers from lower (ground state; GS) to higher (excited state; ES) energy states. The EL intensities of the ES and GS emissions exhibited different J dependence, also because of the state-filling effect. The point-spread function (PSF) deduced from the Fourier-transformed EL spectrum exhibited a peak without apparent side lobes. The half width at half maximum of the PSF was 6.5 µm, which corresponds to the estimated axial resolution of the optical coherence tomography (OCT) image obtained with this light source. These results demonstrate the effectiveness of the QD-based device for realizing noise-reduced high-resolution OCT.

  • Millimeter-Wave Broadband Mode Transition between Grounded Coplanar Waveguide and Post-Wall Waveguide

    Ryohei HOSONO  Yusuke UEMICHI  Xu HAN  Ning GUAN  Yusuke NAKATANI  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    33-39

    A broadband mode transition between grounded coplanar waveguide (GCPW) and post-wall waveguide (PWW) is proposed. The transition is composed of GCPW, microstrip line (MSL) and PWW, where the GCPW and PWW are connected via the MSL. The transition is fabricated on liquid crystal polymer (LCP) substrate because of its low dielectric loss and cost effectiveness based on a roll-to-roll fabrication process. Center strip of the GCPW is sandwiched by two ground pads in each of which two through-holes and a rectangular slit are structured. Broadband impedance matching is achieved by this structure thanks to an addition of lumped inductance and capacitance to the transition. A part of the MSL is tapered for the broadband operation. A 25% impedance bandwidth for |S11| less than -15dB is achieved in measurement of a fabricated transition. Loss of the GCPW ground-signal-ground (GSG) pad of 0.12dB and that of the MSL-PWW transition of 0.29dB at 60GHz are evaluated from the measurement. Fabrication error and the caused tolerance on performance are also evaluated and small variation in production is confirmed. The mode transition can be used for low loss antenna-in-package in millimeter-wave applications.

  • N-Shift ZCZ Pilot Sequence Design for High Accuracy Navigation Based on Broadband Air-to-Ground Communication System

    Chao ZHANG  Keke PANG  Lu MA  

     
    LETTER

      Vol:
    E98-A No:11
      Page(s):
    2270-2273

    The pilot symbols in the broadband Air-to-Ground (A/G) communications system, e.g., L-band Digital Aeronautical Communications System (L-DACS1), are expected to be also utilized for navigation. In order to identify the co-channel signals from different Ground Stations (GSs), the N-Shift Zero Correlation Zone (NS-ZCZ) sequences are employed for pilot sequences. The ideal correlation property of the proposed pilot sequence in ZCZ can maintain the signal with less co-channel interference. The simulation confirms that the more co-channel GSs are employed, the higher navigation accuracy can be achieved.

  • A Simplified Broadband Output Matching Technique for CMOS stacked Power Amplifiers

    Jaeyong KO  Kihyun KIM  Jaehoon SONG  Sangwook NAM  

     
    BRIEF PAPER

      Vol:
    E97-C No:10
      Page(s):
    938-940

    This paper describes the design method of a broadband CMOS stacked power amplifier using harmonic control over wide bandwidths in a 0.11,$mu $m standard CMOS process. The high-efficiency can be obtained over wide bandwidths by designing a load impedance circuit as purely reactive as possible to the harmonics with broadband fundamental matching, which is based on continuous Class-F mode of operation. Furthermore, the stacked topology overcomes the low breakdown voltage limit of CMOS transistor and increases output impedance. With a 5-V supply and a fixed matching circuitry, the suggested power amplifier (PA) achieves a saturated output power of over 26.7,dBm and a drain efficiency of over 38% from 1.6,GHz to 2.2,GHz. In W-CDMA modulation signal measurements, the PA generates linear power and power added efficiency of over 23.5,dBm and 33% (@ACLR $=-33$,dBc).

  • Binary Increase-Adaptive Decrease (BIAD): A Variant for Improving TCP Performance in Broadband Wireless Access Networks

    Konstantinos G. TSIKNAS  Christos J. SCHINAS  George STAMATELOS  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1606-1613

    High-speed wireless access technologies have evolved over the last years setting new challenges for TCP. That is, to effectively utilize the available network resources and to minimize the effects of wireless channel errors on TCP performance. This paper introduces a new TCP variant, called TCP-BIAD aiming at enhancing TCP performance in broadband wireless access networks. We provide analytical expressions for evaluating the stability, throughput, fairness and friendliness properties of our proposal, and we validate our results by means of computer simulations. Initial results presented in this paper show that this approach achieves high network utilization levels in a wide range of network conditions, while maintaining an adequately fair and friendly behavior with respect to coexisting TCP flows.

  • Broadband Access in Complex Environments: LTE on Railway Open Access

    César BRISO-RODRÍGUEZ  Carlos F. LÓPEZ  Jean R.O. FERNÁNDEZ  Sergio PÉREZ  Drasko DRASKOVIC  Jaime CALLE-SÁNCHEZ  Mariano MOLINA-GARCIA  José I. ALONSO  Carlos RODRÍGUEZ  Carlos HERNÁNDEZ  Juan MORENO  José RODRÍGUEZ-PIÑEIRO  José A. GARCÍA-NAYA  Luis CASTEDO  Alfonso FERNANDEZ-DURÁN  

     
    INVITED PAPER

      Vol:
    E97-B No:8
      Page(s):
    1514-1527

    This paper assesses the main challenges associated with the propagation and channel modeling of broadband radio systems in a complex environment of high speed and metropolitan railways. These challenges comprise practical simulation, modeling interferences, radio planning, test trials and performance evaluation in different railway scenarios using Long Term Evolution (LTE) as test case. This approach requires several steps; the first is the use of a radio propagation simulator based on ray-tracing techniques to accurately predict propagation. Besides the radio propagation simulator, a complete test bed has been constructed to assess LTE performance, channel propagation conditions and interference with other systems in real-world environments by means of standard-compliant LTE transmissions. Such measurement results allowed us to evaluate the propagation and performance of broadband signals and to test the suitability of LTE radio technology for complex railway scenarios.

  • Evaluation of Interference between Parallel 120-GHz-Band Wireless Link Systems with High-Gain Cassegrain Antennas

    Jun TAKEUCHI  Akihiko HIRATA  Hiroyuki TAKAHASHI  Naoya KUKUTSU  

     
    PAPER

      Vol:
    E96-C No:10
      Page(s):
    1294-1300

    This paper investigates space and polarization multiplexing for multichannel transmission in a 120-GHz band wireless link system. The 120-GHz-band wireless equipment employs Cassegrain antennas with a gain of about 49dBi and cross-polar discrimination of 23dB. When each of two 120-GHz wireless links transmits a 10-Gbit/s data signal in the same direction over a distance of 800m, a bit error rate (BER) of below 10-12 is obtained when the receivers are set 30m apart. When forward error correction and polarization multiplexing are used for each wireless link, we can set two wireless links within 1m of each other and obtain a BER below 10-12. Moreover, we have experimentally shown that the rain attenuation of V- and H-polarization 120-GHz-band signal is almost the same.

  • A Calibrationless Si-CMOS 5-bit Baseband Phase Shifter Using a Fixed-Gain-Amplifier Matrix

    Tuan Thanh TA  Shoichi TANIFUJI  Suguru KAMEDA  Noriharu SUEMATSU  Tadashi TAKAGI  Kazuo TSUBOUCHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:10
      Page(s):
    1322-1329

    In this paper, we propose a novel baseband (BB) phase shifter (PS) using a fixed-gain-amplifier (FGA) matrix. The proposed BB PS consists of 5 stages of a vector synthesis type FGA matrix with in-phase/quadrature-phase (I/Q) input/output interfaces. In order to achieve low gain variation between phase shift states, 3rd to 5th stages are designed to have a phase shift of +φi and -φi (i=3,4,5). To change between +φi and -φi phase shift states, two FGAs with DC bias in-phase/out-phase switches are used. The two FGAs have the same gain, therefore ideally no gain variation can be achieved. Using this configuration, phase shift error and gain variation caused by process mismatch and temperature variation can be reduced. Fabricated 5-bit BB PS has 3-dB bandwidth of 1.05GHz, root-mean-square (rms) phase errors lower than 2.2°, rms gain variations lower than 0.42dB. Power consumption of the PS core and output buffer are 4.9mW and 14.3mW, respectively. 1-dB compression output power is -12.5dBm. The fabricated PS shows that the total phase shift error and gain variation are within the required accuracy of a 5-bit PS with no requirement of calibration.

  • Broad Bandwidth, Electrically Small, Non-Foster Element-Augmented Antenna Designs, Analyses, and Measurements

    Ning ZHU  Richard W. ZIOLKOWSKI  

     
    PAPER-Antennas

      Vol:
    E96-B No:10
      Page(s):
    2399-2409

    Several broad bandwidth, electrically small, non-Foster element-augmented antennas have been designed, analyzed and measured. Both electric loop (protractor) and electric dipole (Egyptian axe) structures have been selected as the near-field resonant parasitic (NFRP) elements for these antenna designs. In order to increase their instantaneous 10dB bandwidth, negative impedance convertor (NIC)-based capacitor and inductor elements have been designed accordingly to be incorporated internally into those NFRP elements. Proper design and analysis procedures for these systems are introduced. The simulated performance characteristics of the resulting non-Foster element-augmented protractor and Egyptian axe dipole antennas are presented. Favorable comparisons with their experimentally measured values are demonstrated.

  • A 60 GHz Power Amplifier with 10 GHz 1-dB Bandwidth and 13.6% PAE in 65 nm CMOS

    Tong WANG  Toshiya MITOMO  Naoko ONO  Shigehito SAIGUSA  Osamu WATANABE  

     
    PAPER

      Vol:
    E96-C No:6
      Page(s):
    796-803

    A four-stage power amplifier (PA) with 10 GHz 1-dB bandwidth (56–66 GHz) is presented. The broadband performance is achieved owing to π-section interstage matching network. Three-stage-current-reuse topology is proposed to enhance efficiency. The amplifier has been fabricated in 65 nm digital CMOS. 18 dB power gain and 9.6 dBm saturated power (Psat) are achieved at 60 GHz. The PA consumes current of 50 mA at 1.2 V supply voltage, and has a peak power-added efficiency (PAE) of 13.6%. To the best of the authors' knowledge, this work shows the highest PAE among the reported CMOS PAs that covers the worldwide 9 GHz ISM millimeter-wave band with less-than-1.2 V supply voltage.

  • Research and Development Issues of Satellite Communications Systems for Large Scale Disaster Relief Open Access

    Naoto KADOWAKI  Takashi TAKAHASHI  Maki AKIOKA  Yoshiyuki FUJINO  Morio TOYOSHIMA  

     
    INVITED PAPER

      Vol:
    E95-B No:11
      Page(s):
    3378-3384

    It is well known that satellite communications systems are effective and essential communication infrastructure for disaster relief. NICT sent researchers to Tsunami stricken area in March right after the Great East Japan Earthquake and provided broadband satellite communications link to support rescue activities. Through this experience, we learned many kinds of requirements of communications for such purposes. In this paper, we list up the requirements and report what kind of satellite communications technologies are needed, and research and development issues.

  • Reduction in Mutual Coupling Characteristics of Slot-Coupled Planar Antenna due to Rectangular Elements

    Huiling JIANG  Ryo YAMAGUCHI  Keizo CHO  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:7
      Page(s):
    2368-2376

    High frequency bands such as the 3-GHz band have received much attention as frequency resources for broadband mobile communication systems. Radio Frequency (RF) integrated antennas are considered to be useful as base station antennas in decreasing the feeding loss that is otherwise inevitable in high frequency bands and they ensure sufficient power for broadband transmission. One problem in actualizing RF integrated antennas is miniaturizing the duplexer, which is generally large, among the RF circuitry components. To downsize the duplexer, we consider separately locating the transmitter (Tx) and receiver (Rx) antennas. To suppress further the mutual coupling between the Tx and Rx antennas, we investigate a filter integrated antenna configuration. In this paper, we consider an aperture coupled patch antenna as the base antenna configuration and propose a new filter integrated antenna that comprises multiple rectangular elements installed between the coupling slot and radiation element of the Rx antenna. The simulation and measurement results confirm that the new antenna reduces the mutual coupling in the transmission frequency band up to 5.7 dB compared to the conventional slot coupled patch antenna configuration.

  • Miniaturized Broadband Antenna Combining Fractal Patterns and Self-Complementary Structures for UWB Applications

    Vasil DIMITROV  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas and Propagation

      Vol:
    E95-B No:5
      Page(s):
    1844-1847

    Miniaturized broadband antennas combining a fractal pattern and a self-complementary structure are demonstrated for UWB applications. Using four kinds of fractal patterns generated with an octagon initiator, similar to a self-complementary structure, we investigate the effect of the fractal pattern on broadband performance. The lower band-edge frequency of the broad bandwidth is decreased by the reduced constant input impedance, which is controlled by the vacant area size inside the fractal pattern. The reduced constant input impedance is shown to be produced by the extended current distribution flowing along the vacant areas. Given the results, miniaturized broadband antennas, impedance-matched to 50 Ω, are designed and fabricated. The measured return loss was better than 10 dB between 2.95 and 10.7 GHz with a size of 2712.5 mm. The lower band-edge frequency was reduced by 28% compared with the initiator.

  • MIMO-OFDM Based Broadband Power Line Communication Using Antenna and Fading Diversity

    Jeonghwa YOO  Sangho CHOE  Nazcar PINE  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E95-B No:5
      Page(s):
    1822-1825

    We present MIMO-OFDM based broadband power line communication (BPLC) that uses antenna and fading diversity. We evaluate the proposed MIMO-OFDM over BPLC channels, with or without cross-talk between antenna paths. The proposed scheme employs maximum ratio combining (MRC) that effectively combines both multiple antenna diversity gain and multipath fading diversity gain over 3-phase (22 MIMO, outdoor) or 1-phase (SISO, indoor) power line channels. Simulation results prove the performance advantage of the proposed scheme, whether or not cross-talk exists, over existing schemes.

  • Self-Complementary Inverted-FL Antenna Using Electromagnetic Coupling Feed for Mobile Phone

    Nobuyasu TAKEMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E95-B No:4
      Page(s):
    1329-1337

    In this paper, the author proposes an electromagnetic coupling fed inverted-FL antenna design. The inverted-FL antenna with a self-complementary structure has been reported as a way to achieve a constant impedance of 188 ohms without the need for a matching load, since the axially symmetric self-complementary antenna has constant impedance, even though it has a finite structure. This design has been realized by integrating an inverted-F antenna with a self-complementary structure for achieving a broadband characteristic and an inverted-L element for operation on a frequency lower than the minimum frequency of the antenna. The proposed antenna realizes a broadband characteristic without attaching the matching load and the impedance transformer to match 50 ohms. The impedance transformer necessary for the inverted-FL antenna with a self-complementary structure is removed by using an electromagnetic coupling feed structure. This antenna, which has a volume of 101045 mm3, obtained broadband and multi-band characteristics covering the GSM850/GSM900/DCS/PCS/UMTS2100/UMTS2600 bands and the 2.5 G/3.5 G bands for Mobile-WiMAX in simulation and measurement.

  • A Simple Broadband Antenna for MIMO Applications in Cognitive Radio

    Dinh Thanh LE  Yoshio KARASAWA  

     
    PAPER-Antennas

      Vol:
    E95-B No:1
      Page(s):
    18-26

    In this paper, a simple type of printed dipole is proposed for Multi-Input Multi-Output (MIMO) applications in cognitive radio. The antenna is composed of a transmission line and a dipole. Some examinations of key factors and optimized parameters of the antenna are presented. The measured results illustrate that the proposed antenna offers a bandwidth of over 50% for Voltage Standing Wave Ratio (VSWR) less than 2, extending from 2.4 GHz to 4.0 GHz. The antenna peak gain in E-plane and radiation patterns at different frequencies are also explored. In addition, based on the proposed antenna, we introduce two simple broadband arrays for MIMO applications in cognitive radio. One has two ports and the other has four ports. Measurement results indicate that the arrays also work in a broad bandwidth. Mutual couplings between ports in each array are kept under -10 dB at the low frequencies and under -20 dB at the high frequencies of bandwidth of the arrays. Furthermore, we utilized the antenna arrays for some MIMO experiments to estimate the channel capacity in a wide frequency range.

  • High Gain Antipodal Fermi Antenna with Low Cross Polarization

    Hiroyasu SATO  Yukiko TAKAGI  Kunio SAWAYA  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:8
      Page(s):
    2292-2297

    Antipodal Fermi antenna (APFA) that uses an antipodal feeding section is proposed and its fundamental characteristics are presented. It is shown that the cross polarization level is decreased by 5–10 dB by the presence of the corrugation. It is also found that high gain, low VSWR and low side lobes and low back lobes are obtained. The mechanism of operation principles is discussed by using FDTD analysis. It is found that the corrugation transforms the current of parallel line mode to the current of traveling wave radiation mode and the effective aperture is enlarged which yields high gain characteristics.

  • Design of Broadband Amplifier Embedded with Band-Pass Filter Using Discrete-Time Technique

    Chih-Hao LU  Ching-Wen HSUE  Bin-Chang CHIEU  Hsiu-Wei LIU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:5
      Page(s):
    882-889

    This paper presents an ultra-wideband amplifier embedded with band-pass filter design. The scattering parameters of a frequency-domain GaAs field effect transistor are converted into z-domain representations by employing the weighted linear least squares method. A least squares scheme is employed to obtain characteristic impedances of transmission line elements that form the amplifier having a flat gain in the passband and good fall-off selectivity in the stopband. Experimental results illustrate the validity of the proposed design method.

21-40hit(147hit)