The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] class(608hit)

1-20hit(608hit)

  • Large Class Detection Using GNNs: A Graph Based Deep Learning Approach Utilizing Three Typical GNN Model Architectures Open Access

    HanYu ZHANG  Tomoji KISHI  

     
    PAPER-Software Engineering

      Pubricized:
    2024/05/14
      Vol:
    E107-D No:9
      Page(s):
    1140-1150

    Software refactoring is an important process in software development. During software refactoring, code smell is a popular research topic that refers to design or implementation flaws in the software. Large class is one of the most concerning code smells in software refactoring. Detecting and refactoring such problem has a profound impact on software quality. In past years, software metrics and clustering techniques have commonly been used for the large class detection. However, deep-learning-based approaches have also received considerable attention in recent studies. In this study, we apply graph neural networks (GNNs), an important division of deep learning, to address the problem of large class detection. First, to support the extensive data requirements of the deep learning task, we apply a semiautomatic approach to generate a substantial number of data samples. Next, we design a new type of directed heterogeneous graph (DHG) as an input graph using the methods similarity matrix and software metrics. We construct an input graph for each class sample and make the graph classification with GNNs to identify the smelly classes. In our experiments, we apply three typical GNN model architectures for large class detection and compare the results with those of previous studies. The results show that the proposed approach can achieve more accurate and stable detection performance.

  • FSAMT: Face Shape Adaptive Makeup Transfer Open Access

    Haoran LUO  Tengfei SHAO  Shenglei LI  Reiko HISHIYAMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2024/04/02
      Vol:
    E107-D No:8
      Page(s):
    1059-1069

    Makeup transfer is the process of applying the makeup style from one picture (reference) to another (source), allowing for the modification of characters’ makeup styles. To meet the diverse makeup needs of individuals or samples, the makeup transfer framework should accurately handle various makeup degrees, ranging from subtle to bold, and exhibit intelligence in adapting to the source makeup. This paper introduces a “3-level” adaptive makeup transfer framework, addressing facial makeup through two sub-tasks: 1. Makeup adaptation, utilizing feature descriptors and eyelid curve algorithms to classify 135 organ-level face shapes; 2. Makeup transfer, achieved by learning the reference picture from three branches (color, highlight, pattern) and applying it to the source picture. The proposed framework, termed “Face Shape Adaptive Makeup Transfer” (FSAMT), demonstrates superior results in makeup transfer output quality, as confirmed by experimental results.

  • Confidence-Driven Contrastive Learning for Document Classification without Annotated Data Open Access

    Zhewei XU  Mizuho IWAIHARA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2024/04/19
      Vol:
    E107-D No:8
      Page(s):
    1029-1039

    Data sparsity has always been a problem in document classification, for which semi-supervised learning and few-shot learning are studied. An even more extreme scenario is to classify documents without any annotated data, but using only category names. In this paper, we introduce a nearest neighbor search-based method Con2Class to tackle this tough task. We intend to produce embeddings for predefined categories and predict category embeddings for all the unlabeled documents in a unified embedding space, such that categories can be easily assigned by searching the nearest predefined category in the embedding space. To achieve this, we propose confidence-driven contrastive learning, in which prompt-based templates are designed and MLM-maintained contrastive loss is newly proposed to finetune a pretrained language model for embedding production. To deal with the issue that no annotated data is available to validate the classification model, we introduce confidence factor to estimate the classification ability by evaluating the prediction confidence. The language model having the highest confidence factor is used to produce embeddings for similarity evaluation. Pseudo labels are then assigned by searching the semantically closest category name, which are further used to train a separate classifier following a progressive self-training strategy for final prediction. Our experiments on five representative datasets demonstrate the superiority of our proposed method over the existing approaches.

  • On Easily Reconstructable Logic Functions Open Access

    Tsutomu SASAO  

     
    PAPER

      Pubricized:
    2024/04/16
      Vol:
    E107-D No:8
      Page(s):
    913-921

    This paper shows that sum-of-product expression (SOP) minimization produces the generalization ability. We show this in three steps. First, various classes of SOPs are generated. Second, minterms of SOP are randomly selected to generate partially defined functions. And, third, from the partially defined functions, original functions are reconstructed by SOP minimization. We consider Achilles heel functions, majority functions, monotone increasing cascade functions, functions generated from random SOPs, monotone increasing random SOPs, circle functions, and globe functions. As for the generalization ability, the presented method is compared with Naive Bayes, multi-level perceptron, support vector machine, JRIP, J48, and random forest. For these functions, in many cases, only 10% of the input combinations are sufficient to reconstruct more than 90% of the truth tables of the original functions.

  • Convolutional Neural Network Based on Regional Features and Dimension Matching for Skin Cancer Classification Open Access

    Zhichao SHA  Ziji MA  Kunlai XIONG  Liangcheng QIN  Xueying WANG  

     
    PAPER-Image

      Vol:
    E107-A No:8
      Page(s):
    1319-1327

    Diagnosis at an early stage is clinically important for the cure of skin cancer. However, since some skin cancers have similar intuitive characteristics, and dermatologists rely on subjective experience to distinguish skin cancer types, the accuracy is often suboptimal. Recently, the introduction of computer methods in the medical field has better assisted physicians to improve the recognition rate but some challenges still exist. In the face of massive dermoscopic image data, residual network (ResNet) is more suitable for learning feature relationships inside big data because of its deeper network depth. Aiming at the deficiency of ResNet, this paper proposes a multi-region feature extraction and raising dimension matching method, which further improves the utilization rate of medical image features. This method firstly extracted rich and diverse features from multiple regions of the feature map, avoiding the deficiency of traditional residual modules repeatedly extracting features in a few fixed regions. Then, the fused features are strengthened by up-dimensioning the branch path information and stacking it with the main path, which solves the problem that the information of two paths is not ideal after fusion due to different dimensionality. The proposed method is experimented on the International Skin Imaging Collaboration (ISIC) Archive dataset, which contains more than 40,000 images. The results of this work on this dataset and other datasets are evaluated to be improved over networks containing traditional residual modules and some popular networks.

  • CPNet: Covariance-Improved Prototype Network for Limited Samples Masked Face Recognition Using Few-Shot Learning Open Access

    Sendren Sheng-Dong XU  Albertus Andrie CHRISTIAN  Chien-Peng HO  Shun-Long WENG  

     
    PAPER-Image

      Pubricized:
    2023/12/11
      Vol:
    E107-A No:8
      Page(s):
    1296-1308

    During the COVID-19 pandemic, a robust system for masked face recognition has been required. Most existing solutions used many samples per identity for the model to recognize, but the processes involved are very laborious in a real-life scenario. Therefore, we propose “CPNet” as a suitable and reliable way of recognizing masked faces from only a few samples per identity. The prototype classifier uses a few-shot learning paradigm to perform the recognition process. To handle complex and occluded facial features, we incorporated the covariance structure of the classes to refine the class distance calculation. We also used sharpness-aware minimization (SAM) to improve the classifier. Extensive in-depth experiments on a variety of datasets show that our method achieves remarkable results with accuracy as high as 95.3%, which is 3.4% higher than that of the baseline prototype network used for comparison.

  • Analytical Model of Maximum Operating Frequency of Class-D ZVS Inverter with Linearized Parasitic Capacitance and any Duty Ratio Open Access

    Yi XIONG  Senanayake THILAK  Yu YONEZAWA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Circuit Theory

      Pubricized:
    2023/12/05
      Vol:
    E107-A No:8
      Page(s):
    1115-1126

    This paper proposes an analytical model of maximum operating frequency of class-D zero-voltage-switching (ZVS) inverter. The model includes linearized drain-source parasitic capacitance and any duty ratio. The nonlinear drain-source parasitic capacitance is equally linearized through a charge-related equation. The model expresses the relationship among frequency, shunt capacitance, duty ratio, load impedance, output current phase, and DC input voltage under the ZVS condition. The analytical result shows that the maximum operating frequency under the ZVS condition can be obtained when the duty ratio, the output current phase, and the DC input voltage are set to optimal values. A 650 V/30 A SiC-MOSFET is utilized for both simulated and experimental verification, resulting in good consistency.

  • Dual-Path Convolutional Neural Network Based on Band Interaction Block for Acoustic Scene Classification Open Access

    Pengxu JIANG  Yang YANG  Yue XIE  Cairong ZOU  Qingyun WANG  

     
    LETTER-Engineering Acoustics

      Pubricized:
    2023/10/04
      Vol:
    E107-A No:7
      Page(s):
    1040-1044

    Convolutional neural network (CNN) is widely used in acoustic scene classification (ASC) tasks. In most cases, local convolution is utilized to gather time-frequency information between spectrum nodes. It is challenging to adequately express the non-local link between frequency domains in a finite convolution region. In this paper, we propose a dual-path convolutional neural network based on band interaction block (DCNN-bi) for ASC, with mel-spectrogram as the model’s input. We build two parallel CNN paths to learn the high-frequency and low-frequency components of the input feature. Additionally, we have created three band interaction blocks (bi-blocks) to explore the pertinent nodes between various frequency bands, which are connected between two paths. Combining the time-frequency information from two paths, the bi-blocks with three distinct designs acquire non-local information and send it back to the respective paths. The experimental results indicate that the utilization of the bi-block has the potential to improve the initial performance of the CNN substantially. Specifically, when applied to the DCASE 2018 and DCASE 2020 datasets, the CNN exhibited performance improvements of 1.79% and 3.06%, respectively.

  • Pattern-Based Meta Graph Neural Networks for Argument Classifications Open Access

    Shiyao DING  Takayuki ITO  

     
    PAPER

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    451-458

    Despite recent advancements in utilizing meta-learning for addressing the generalization challenges of graph neural networks (GNN), their performance in argumentation mining tasks, such as argument classifications, remains relatively limited. This is primarily due to the under-utilization of potential pattern knowledge intrinsic to argumentation structures. To address this issue, our study proposes a two-stage, pattern-based meta-GNN method in contrast to conventional pattern-free meta-GNN approaches. Initially, our method focuses on learning a high-level pattern representation to effectively capture the pattern knowledge within an argumentation structure and then predicts edge types. It then utilizes a meta-learning framework in the second stage, designed to train a meta-learner based on the predicted edge types. This feature allows for rapid generalization to novel argumentation graphs. Through experiments on real English discussion datasets spanning diverse topics, our results demonstrate that our proposed method substantially outperforms conventional pattern-free GNN approaches, signifying a significant stride forward in this domain.

  • Ensemble Malware Classifier Considering PE Section Information

    Ren TAKEUCHI  Rikima MITSUHASHI  Masakatsu NISHIGAKI  Tetsushi OHKI  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E107-A No:3
      Page(s):
    306-318

    The war between cyber attackers and security analysts is gradually intensifying. Owing to the ease of obtaining and creating support tools, recent malware continues to diversify into variants and new species. This increases the burden on security analysts and hinders quick analysis. Identifying malware families is crucial for efficiently analyzing diversified malware; thus, numerous low-cost, general-purpose, deep-learning-based classification techniques have been proposed in recent years. Among these methods, malware images that represent binary features as images are often used. However, no models or architectures specific to malware classification have been proposed in previous studies. Herein, we conduct a detailed analysis of the behavior and structure of malware and focus on PE sections that capture the unique characteristics of malware. First, we validate the features of each PE section that can distinguish malware families. Then, we identify PE sections that contain adequate features to classify families. Further, we propose an ensemble learning-based classification method that combines features of highly discriminative PE sections to improve classification accuracy. The validation of two datasets confirms that the proposed method improves accuracy over the baseline, thereby emphasizing its importance.

  • Hierarchical Latent Alignment for Non-Autoregressive Generation under High Compression Ratio

    Wang XU  Yongliang MA  Kehai CHEN  Ming ZHOU  Muyun YANG  Tiejun ZHAO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/12/01
      Vol:
    E107-D No:3
      Page(s):
    411-419

    Non-autoregressive generation has attracted more and more attention due to its fast decoding speed. Latent alignment objectives, such as CTC, are designed to capture the monotonic alignments between the predicted and output tokens, which have been used for machine translation and sentence summarization. However, our preliminary experiments revealed that CTC performs poorly on document abstractive summarization, where a high compression ratio between the input and output is involved. To address this issue, we conduct a theoretical analysis and propose Hierarchical Latent Alignment (HLA). The basic idea is a two-step alignment process: we first align the sentences in the input and output, and subsequently derive token-level alignment using CTC based on aligned sentences. We evaluate the effectiveness of our proposed approach on two widely used datasets XSUM and CNNDM. The results indicate that our proposed method exhibits remarkable scalability even when dealing with high compression ratios.

  • Backdoor Attacks on Graph Neural Networks Trained with Data Augmentation

    Shingo YASHIKI  Chako TAKAHASHI  Koutarou SUZUKI  

     
    LETTER

      Pubricized:
    2023/09/05
      Vol:
    E107-A No:3
      Page(s):
    355-358

    This paper investigates the effects of backdoor attacks on graph neural networks (GNNs) trained through simple data augmentation by modifying the edges of the graph in graph classification. The numerical results show that GNNs trained with data augmentation remain vulnerable to backdoor attacks and may even be more vulnerable to such attacks than GNNs without data augmentation.

  • BRsyn-Caps: Chinese Text Classification Using Capsule Network Based on Bert and Dependency Syntax

    Jie LUO  Chengwan HE  Hongwei LUO  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/11/06
      Vol:
    E107-D No:2
      Page(s):
    212-219

    Text classification is a fundamental task in natural language processing, which finds extensive applications in various domains, such as spam detection and sentiment analysis. Syntactic information can be effectively utilized to improve the performance of neural network models in understanding the semantics of text. The Chinese text exhibits a high degree of syntactic complexity, with individual words often possessing multiple parts of speech. In this paper, we propose BRsyn-caps, a capsule network-based Chinese text classification model that leverages both Bert and dependency syntax. Our proposed approach integrates semantic information through Bert pre-training model for obtaining word representations, extracts contextual information through Long Short-term memory neural network (LSTM), encodes syntactic dependency trees through graph attention neural network, and utilizes capsule network to effectively integrate features for text classification. Additionally, we propose a character-level syntactic dependency tree adjacency matrix construction algorithm, which can introduce syntactic information into character-level representation. Experiments on five datasets demonstrate that BRsyn-caps can effectively integrate semantic, sequential, and syntactic information in text, proving the effectiveness of our proposed method for Chinese text classification.

  • Negative Learning to Prevent Undesirable Misclassification

    Kazuki EGASHIRA  Atsuyuki MIYAI  Qing YU  Go IRIE  Kiyoharu AIZAWA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/10/05
      Vol:
    E107-D No:1
      Page(s):
    144-147

    We propose a novel classification problem setting where Undesirable Classes (UCs) are defined for each class. UC is the class you specifically want to avoid misclassifying. To address this setting, we propose a framework to reduce the probabilities for UCs while increasing the probability for a correct class.

  • Research on Lightweight Acoustic Scene Perception Method Based on Drunkard Methodology

    Wenkai LIU  Lin ZHANG  Menglong WU  Xichang CAI  Hongxia DONG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/10/23
      Vol:
    E107-D No:1
      Page(s):
    83-92

    The goal of Acoustic Scene Classification (ASC) is to simulate human analysis of the surrounding environment and make accurate decisions promptly. Extracting useful information from audio signals in real-world scenarios is challenging and can lead to suboptimal performance in acoustic scene classification, especially in environments with relatively homogeneous backgrounds. To address this problem, we model the sobering-up process of “drunkards” in real-life and the guiding behavior of normal people, and construct a high-precision lightweight model implementation methodology called the “drunkard methodology”. The core idea includes three parts: (1) designing a special feature transformation module based on the different mechanisms of information perception between drunkards and ordinary people, to simulate the process of gradually sobering up and the changes in feature perception ability; (2) studying a lightweight “drunken” model that matches the normal model's perception processing process. The model uses a multi-scale class residual block structure and can obtain finer feature representations by fusing information extracted at different scales; (3) introducing a guiding and fusion module of the conventional model to the “drunken” model to speed up the sobering-up process and achieve iterative optimization and accuracy improvement. Evaluation results on the official dataset of DCASE2022 Task1 demonstrate that our baseline system achieves 40.4% accuracy and 2.284 loss under the condition of 442.67K parameters and 19.40M MAC (multiply-accumulate operations). After adopting the “drunkard” mechanism, the accuracy is improved to 45.2%, and the loss is reduced by 0.634 under the condition of 551.89K parameters and 23.6M MAC.

  • Device Type Classification Based on Two-Stage Traffic Behavior Analysis Open Access

    Chikako TAKASAKI  Tomohiro KORIKAWA  Kyota HATTORI  Hidenari OHWADA  

     
    PAPER

      Pubricized:
    2023/10/17
      Vol:
    E107-B No:1
      Page(s):
    117-125

    In the beyond 5G and 6G networks, the number of connected devices and their types will greatly increase including not only user devices such as smartphones but also the Internet of Things (IoT). Moreover, Non-terrestrial networks (NTN) introduce dynamic changes in the types of connected devices as base stations or access points are moving objects. Therefore, continuous network capacity design is required to fulfill the network requirements of each device. However, continuous optimization of network capacity design for each device within a short time span becomes difficult because of the heavy calculation amount. We introduce device types as groups of devices whose traffic characteristics resemble and optimize network capacity per device type for efficient network capacity design. This paper proposes a method to classify device types by analyzing only encrypted traffic behavior without using payload and packets of specific protocols. In the first stage, general device types, such as IoT and non-IoT, are classified by analyzing packet header statistics using machine learning. Then, in the second stage, connected devices classified as IoT in the first stage are classified into IoT device types, by analyzing a time series of traffic behavior using deep learning. We demonstrate that the proposed method classifies device types by analyzing traffic datasets and outperforms the existing IoT-only device classification methods in terms of the number of types and the accuracy. In addition, the proposed model performs comparable as a state-of-the-art model of traffic classification, ResNet 1D model. The proposed method is suitable to grasp device types in terms of traffic characteristics toward efficient network capacity design in networks where massive devices for various services are connected and the connected devices continuously change.

  • Analysis and Design of Class-Φ22 Wireless Power Transfer System

    Weisen LUO  Xiuqin WEI  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1402-1410

    This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.

  • Associating Colors with Mental States for Computer-Aided Drawing Therapy

    Satoshi MAEDA  Tadahiko KIMOTO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/09/14
      Vol:
    E106-D No:12
      Page(s):
    2057-2068

    The aim of a computer-aided drawing therapy system in this work is to associate drawings which a client makes with the client's mental state in quantitative terms. A case study is conducted on experimental data which contain both pastel drawings and mental state scores obtained from the same client in a psychotherapy program. To perform such association through colors, we translate a drawing to a color feature by measuring its representative colors as primary color rates. A primary color rate of a color is defined from a psychological primary color in a way such that it shows a rate of emotional properties of the psychological primary color which is supposed to affect the color. To obtain several informative colors as representative ones of a drawing, we define two kinds of color: approximate colors extracted by color reduction, and area-averaged colors calculated from the approximate colors. A color analysis method for extracting representative colors from each drawing in a drawing sequence under the same conditions is presented. To estimate how closely a color feature is associated with a concurrent mental state, we propose a method of utilizing machine-learning classification. A practical way of building a classification model through training and validation on a very small dataset is presented. The classification accuracy reached by the model is considered as the degree of association of the color feature with the mental state scores given in the dataset. Experiments were carried out on given clinical data. Several kinds of color feature were compared in terms of the association with the same mental state. As a result, we found out a good color feature with the highest degree of association. Also, primary color rates proved more effective in representing colors in psychological terms than RGB components. The experimentals provide evidence that colors can be associated quantitatively with states of human mind.

  • Comments on Quasi-Linear Support Vector Machine for Nonlinear Classification

    Sei-ichiro KAMATA  Tsunenori MINE  

     
    WRITTEN DISCUSSION-General Fundamentals and Boundaries

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1444-1445

    In 2014, the above paper entitled ‘Quasi-Linear Support Vector Machine for Nonlinear Classification’ was published by Zhou, et al. [1]. They proposed a quasi-linear kernel function for support vector machine (SVM). However, in this letter, we point out that this proposed kernel function is a part of multiple kernel functions generated by well-known multiple kernel learning which is proposed by Bach, et al. [2] in 2004. Since then, there have been a lot of related papers on multiple kernel learning with several applications [3]. This letter verifies that the main kernel function proposed by Zhou, et al. [1] can be derived using multiple kernel learning algorithms [3]. In the kernel construction, Zhou, et al. [1] used Gaussian kernels, but the multiple kernel learning had already discussed the locality of additive Gaussian kernels or other kernels in the framework [4], [5]. Especially additive Gaussian or other kernels were discussed in tutorial at major international conference ECCV2012 [6]. The authors did not discuss these matters.

  • Authors' Reply to the Comments by Kamata et al.

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    WRITTEN DISCUSSION

      Pubricized:
    2023/05/08
      Vol:
    E106-A No:11
      Page(s):
    1446-1449

    We thank Kamata et al. (2023) [1] for their interest in our work [2], and for providing an explanation of the quasi-linear kernel from a viewpoint of multiple kernel learning. In this letter, we first give a summary of the quasi-linear SVM. Then we provide a discussion on the novelty of quasi-linear kernels against multiple kernel learning. Finally, we explain the contributions of our work [2].

1-20hit(608hit)