The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] current mirror(15hit)

1-15hit
  • A Consideration of Threshold Voltage Mismatch Effects and a Calibration Technique for Current Mirror Circuits

    Tohru KANEKO  Koji HIROSE  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    224-232

    A current mirror circuit is often used in Gm-cells and current amplifiers in order to obtain high linearity and high accurate current gain. However, it is expected that a threshold voltage mismatch between transistors pair in the current mirror affects these performances in recent scaled technologies. In this paper, negative effects caused by the mismatch in the current mirror are considered and a new calibration technique for the mismatch issues is proposed. In the current mirror without the mismatch, the high-linearity operation is provided by distortion canceling under the condition that the transistors have the same operating points. The threshold voltage mismatch disturbs the cancellation, therefore the distortion is appeared. In order to address the issue, a new calibration technique using a backgating effect is considered. This calibration can reduce the threshold voltage mismatch directly by controlling the body bias voltage with DACs. According to simulation results with Monte Carlo sampling in 65nm CMOS process, owing to the proposed calibration, the worst HD2 and HD3 are improved by 18.4dB and 11.6dB, respectively. In addition, the standard deviation of the current gain is reduced from 399mdB to 34mdB.

  • A High Output Resistance 1.2-V VDD Current Mirror with Deep Submicron Vertical MOSFETs

    Satoru TANOI  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E97-C No:5
      Page(s):
    423-430

    A low VDD current mirror with deep sub-micron vertical MOSFETs is presented. The keys are new bias circuits to reduce both the minimum VDD for the operation and the sensitivity of the output current on VDD. In the simulation, our circuits reduce the minimum VDD by about 17% and the VDD sensitivity by one order both from those of the conventional. In the simulation with 90nm φ vertical MOSFET approximate models, our circuit shows about 4MΩ output resistance at 1.2-V VDD with the small temperature dependence, which is about six times as large as that with planar MOSFETs.

  • A CMOS RF Programmable Gain Amplifier Using Current Mirror Method for Digital TV Tuner Applications

    Hyouk-Kyu CHA  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:5
      Page(s):
    706-708

    In this letter, a highly linear 1.22 GHz current mirror based differential RF programmable gain amplifier (RFPGA) for digital TV tuner applications is proposed and implemented using 0.18-µm CMOS process. The fabricated RFPGA shows a maximum power gain of 9 dB, an OIP3 of 23.5 dBm, and an accurate dB-linear discrete gain step control while consuming 36 mA from a 1.8-V supply voltage.

  • Low Power 10-b 250 Msample/s CMOS Cascaded Folding and Interpolating A/D Converter

    Zhi-Yuan CUI  Yong-Gao JIN  Nam-Soo KIM  Ho-Yong CHOI  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:8
      Page(s):
    1073-1079

    This paper introduces a new folding amplifier in a folding and interpolating 10-b ADC. The amplifier consists of current mirrors and differential stages. Only one current source is exploited in cascaded differential pairs, which reduces the power consumption significantly. In the folding circuit, the interpolation is implemented with a current division technique. An experiment of the amplifier in 10-b folding signal has been integrated in a single-poly four-metal 0.35 µm CMOS process. The simulation in 10-b folding ADC shows that power consumption is 225 mW at the sampling speed of 250 Msample/s and the power supply of 3.3 V. The preliminary experiment indicates the current steering folder and digital bits operate as expected.

  • An Ultra-Low-Voltage Ultra-Low-Power Weak Inversion Composite MOS Transistor: Concept and Applications

    Luis H.C. FERREIRA  Tales C. PIMENTA  Robson L. MORENO  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:4
      Page(s):
    662-665

    This work presents an ultra-low-voltage ultra-low-power weak inversion composite MOS transistor. The steady state power consumption and the linear swing signal of the composite transistor are comparable to a single transistor, whereas presenting very high output impedance. This work also presents two interesting applications for the composite transistor; a 1:1 current mirror and an extremely low power temperature sensor, a thermistor. Both implementations are verified in a standard 0.35-µm TSMC CMOS process. The current mirror presents high output impedance, comparable to the cascode configuration, which is highly desirable to improve gain and PSRR of amplifiers circuits, and mirroring relation in current mirrors.

  • A Current-Steering DAC Architecture with Novel Switching Scheme for GPON Burst-Mode Laser Drivers

    Wei CHEN  Johan BAUWELINCK  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:4
      Page(s):
    877-884

    This paper describes a current-steering Digital-to-Analog Converter (IDAC) architecture with a novel switching scheme, designed for GPON Burst Mode Laser Drivers (BMLD) and realized in a 0.35 µm SiGe BiCMOS technology with 3.3 V power supply. The (4+6) segmented architecture of the proposed 10-bit IDAC is optimized for minimum DNL (Differential Nonlinearity). It combines a 4-bit MSBs (Most Significant Bits) unit-element sub-DAC and a 6-bit LSBs (Least Significant Bits) binary-weighted sub-DAC. A switching scheme based on this dedicated architecture yields a high monotony and a fast settling time. The linearity errors caused by systematic influences and random variations are reduced by the 2-D double centroid symmetrical architecture. Experimental results show that the DNL is below 0.5 LSB and that the settling time after the output current mirror is below 12 ns. Although the proposed IDAC architecture was designed for a BMLD chip, the design concept is generic and can be applied for developing other monotonic high-speed current-mode DACs.

  • An LCD Backlight-Module Driver Using a New Multi-Lamp Current Sharing Technique

    Chang-Hua LIN  John Yanhao CHEN  Fuhliang WEN  

     
    PAPER

      Vol:
    E88-C No:11
      Page(s):
    2111-2117

    This paper proposes a backlight module which drives multiple cold-cathode fluorescent lamps (CCFLs) with a current mirror technique to equalize the driving current for each lamp. We first adopt a half-bridge parallel-resonant inverter as the main circuit and use a single-input, multiple-output transformer to drive the multi-CCFLs. Next, we introduce current-mirror circuits to create a new current-sharing circuit, in which its current reference node and the parallel-connected multi-load nodes are used to accurately equalize all CCFLs' driving current. This will balance each lamp's brightness and, consequently, improve the picture display quality of the related liquid crystal display (LCD). This paper details the design concept for each component value with the assistance of an actual design example. The results of the example are examined with its actual measurements, which consequently verify the correctness of the proposed control strategy.

  • A Low-Power High-Frequency CMOS Current-Mirror Sinusoidal Quadrature Oscillator

    Adisorn LEELASANTITHAM  Banlue SRISUCHINWONG  

     
    PAPER-Analog Signal Processing

      Vol:
    E87-A No:11
      Page(s):
    2964-2972

    A low-power high-frequency sinusoidal quadrature oscillator is presented through a new RC technique using only CMOS current mirrors. The technique is relatively simple based on (1) internal capacitances of CMOS current mirrors and (2) a resistor of a CMOS current mirror for a negative resistance. Neither external capacitances nor inductances are required. As a particular example, a 2.4 GHz-0.4 mW, 0.325-fT, CMOS sinusoidal quadrature oscillator has been demonstrated. The power consumption is very low at approximately 0.4 mW. Total harmonic distortions (THD) are less than 0.3%. The oscillation frequency is current-tunable over a range of 540 MHz or 22%. The amplitude matching and the quadrature phase matching are better than 0.035 dB and 0.15, respectively. A figure of merit called a normalized carrier-to-noise ratio (CNRnorm) is 158.79 dBc/Hz at the 2 MHz offset from 2.46 GHz. Comparisons to other approaches are also presented.

  • Current Mode Circuits for Fast and Accurate Optical Level Monitoring with Wide Dynamic Range

    Johan BAUWELINCK  Dieter VERHULST  Peter OSSIEUR  Xing-Zhi QIU  Jan VANDEWEGE  Benoit DE VOS  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E87-B No:9
      Page(s):
    2641-2647

    This paper presents a new approach based on current mode circuits for fast and accurate optical level monitoring with wide dynamic range of a gigabit burst-mode laser driver chip. Our proposed solution overcomes the drawbacks that voltage mode implementations show at higher bit rates or in other technologies. The main speed-limiting factor of the level monitoring circuitry is the parasitic capacitance of the back facet monitor photodiode. We propose the use of an active-input current mirror to reduce the impact of this parasitic capacitance. The mirror produces two copies of the photo current, one to be used for the "0" level measurement and another for the "1" level measurement. The mirrored currents are compared to two reference currents by two current comparators. Every reference current needs only one calibration at room temperature. A pattern detection block scans the incoming data for patterns of sufficiently long consecutive 0's or 1's. At the end of such a pattern a valid measurement is present at the output of one of the current comparators. Based on these measurements the digital Automatic Power Control (APC) will adjust the bias (IBIAS) and modulation current (IMOD) setting of the laser driver. Tests show that the chip can stabilize and track the launched optical power with a tolerance of less than 1 dB. In these tests the pattern detection was programmed to sample the current comparators after 5 bytes (32 ns at 1.25 Gbps) of consecutive 1's and 0's. Automatic power control on such short strings of data has not been demonstrated before. Although this laser transmitter was developed for FSAN GPON applications at a speed of 1.25 Gbps upstream, the design concept is generic and can be applied for developing a wide range of burst mode laser transmitters. This chip was developed in a 0.35 µm SiGe BiCMOS process.

  • Neuron-MOS Current Mirror Circuit and Its Application to Multi-Valued Logic

    Jing SHEN  Koichi TANNO  Okihiko ISHIZUKA  Zheng TANG  

     
    PAPER-Circuits

      Vol:
    E82-D No:5
      Page(s):
    940-948

    A neuron-MOS transistor (νMOS) is applied to current-mode multi-valued logic (MVL) circuits. First, a novel low-voltage and low-power νMOS current mirror is presented. Then, a threshold detector and a quaternary T-gate using the proposed νMOS current mirrors are proposed. The minimum output voltage of the νMOS current mirror is decreased by VT (threshold voltage), compared with the conventional double cascode current mirror. The νMOS threshold detector is built on a νMOS current comparator originally composed of νMOS current mirrors. It has a high output swing and sharp transfer characteristics. The gradient of the proposed comparator output in the transfer region can be increased 6.3-fold compared with that in the conventional comparator. Along with improved operation of the novel current comparator, the discriminative ability of the proposed νMOS threshold detector is also increased. The performances of the proposed circuits are validated by HSPICE with Motorola 1.5 µm CMOS device parameters. Furthermore, the operation of a νMOS current mirror is also confirmed through experiments on test chips fabricated by VDEC*. The active area of the proposed νMOS current mirror is 63 µm 51 µm.

  • GaAs FET Current-Mode Integrators and Their Application to Filters

    Nobukazu TAKAI  Nobuo FUJII  

     
    PAPER

      Vol:
    E82-A No:2
      Page(s):
    320-326

    In this paper, current-mode integrators which consist of only n-channel depletion-mode FET and their application to filters are presented. Lossy integrator is simply realized with a capacitor and a grounded gate FET. Lossless integrator can be obtained by providing a lossy integrator with a positive feedback. To do this, multi-output current mirror is proposed. To reduce 2nd-order harmonic and THD of the filter, unbalanced/balanced conversion circuit is proposed. As an application example, 3rd-order leapfrog low-pass Chebyshev filter is simulated with GaAs MESFET process parameters. Simulation results show good performances.

  • High-Swing CMOS Cascode Current Mirror Operating with 1V Power Supply Voltage

    Sibum JUN  Dae Mann KIM  

     
    PAPER-Analog Signal Processing

      Vol:
    E80-A No:6
      Page(s):
    1083-1091

    A high performance, high-swing CMOS cascode current mirror operating with 1V power supply voltage and using standard CMOS technology is presented. The present circuit employs PMOS source-coupled pair as voltage level shifter to reduce the power supply voltage requirement. The additional advantages of the use of the source-coupled pair are the improved output resistance and the automatic adaptive biasing, thereby enabling the high-swing of output terminal, when used in the cascode configuration. An analytical discussion of the circuit is carried out and the results are confirmed by SPICE simulation. SPICE simulation results show that the input voltage requirement is 370mV and the minimum output voltage requirement is 273mV at the maximum input current of 40µA, whose requirements decrease with decreasing input currens. The output resistance is shown to be greater than 4MΩ at the maximum output current of 40µA, which increases with decreasing output currents. The -3dB bandwidth is shown to be greater than 400MHz and the total harmonic distortion better than -54.34dB at 100kHz at the maximum peak-to-peak input current swing of 40µA. The present circuit will be useful for the low voltage, low power, high-performance mixed analog/digital signal processing.

  • High Output-Resistance CMOS Current Mirrors for Low-Voltage Applications

    Tetsuro ITAKURA  Zdzislaw CZARNUL  

     
    LETTER-Analog Signal Processing

      Vol:
    E80-A No:1
      Page(s):
    230-232

    Two high output-resistance CMOS current mirrors suitable for a low-voltage operation and achieving a high output-swing are presented. They incorporate a modified regulated-cascode, which employs a current-mode amplifier. The main architecture concepts and their detailed schematic examples are discussed. SPICE simulation comparison is shown and the properties of each architecture are pointed out.

  • Low Temperature Coefficient CMOS Voltage Reference Circuits

    Katsuji KIMURA  

     
    LETTER

      Vol:
    E77-A No:2
      Page(s):
    398-402

    Novel circuit design techniques for CMOSFET (complementary MOS field-effet transistor)-only bias circuits, which each include a current mirror with a peaking characteristic, a current reference with a positive temperature coefficient, and a voltage reference with an optional temperature dependence, are described. An MOS Nagata current mirror is analyzed, and bias circuits like a CMOS self-biasing Nagata current reference and a CMOS self-biasing Nagata voltage reference, both of which include an MOS Nagata current mirror, are discussed. In addition, a CMOS temperature coefficient shifter, used to add an offset voltage and an optional temperature coefficient to a reference voltage, is also discussed. The CMOS Nagata voltage reference was verified with a breadboard using discrete componente and a 0.15 mV/ temperature dependence.

  • A Realization of Low Sensitivity RCCS-Controlled Monolithic Integrators and Their Application to RC Active Filters

    Yukio ISHIBASHI  Fujihiko MATSUMOTO  

     
    PAPER-Analog Circuits and Signal Processing

      Vol:
    E75-A No:12
      Page(s):
    1777-1784

    Up to present, some automatically tunable active RC filters have been proposed for the monolithic integrated continuous-time filters. In this paper a synthesis method of monolithic active RC filters is presented, whose characteristic is hardly dependent on temperature, supply voltage and so on, theoretically. First, this paper describes a variable integrator controlled by bias current. Second, a resistor controlled current source circuit (RCCS) is also proposed, which contains the voltage controlled current source (VCCS) being identical with that used in the realization of the integrator and whose current is controlled by an external resistor. The use of this VCCS in the RCCS can completely compensate the variation of the integrator characteristics. Finally, these circuits are applied to realize a third-order elliptic low-pass filter, which is simulated on PSPICE. From the simulations, we obtain excellent results as follows: The deviation of gains in the passband due to the variation of temperature with a range of -10 to 60 is within 0.02 dB; A total harmonic distortion with a 1 Vp-p input voltage at 100 kHz is less than 0.4% when the cut-off frequency is 1 MHz and the supply voltage is 5 V.