The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] deposition(60hit)

1-20hit(60hit)

  • Vapor Deposition of Fluoropolymer Thin Films for Antireflection Coating

    Soma YASUI  Fujio OHISHI  Hiroaki USUI  

     
    PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    195-201

    Thin films of Teflon AF 1600 were prepared by an electron-assisted (e-assist) deposition method. IR analysis revealed that the e-assist deposition generates small amount of polar groups such as carboxylic acid in the molecular structure of the deposited films. The polar groups contributed to increase intermolecular interaction and led to remarkable improvement in the adhesion strength and robustness of the films especially when a bias voltage was applied to the substrate in the course of e-assist deposition. The vapor-deposited Teflon AF films had refractive indices of 1.35 to 1.38, and were effective for antireflection coatings. The use of e-assist deposition slightly increased the refractive index as a trade-off for the improvement of film robustness.

  • Present Status and Prospect of Graphene Interconnect Applications

    Kazuyoshi UENO  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    572-577

    Graphene has been expected as an alternative material for copper interconnects in which resistance increases and reliability deteriorates in nanoscale. While the principle advantages are verified by simulations and experiments, they have not been put into practical use due to the immaturity of the manufacturing process leading to mass production. On the other hand, recent steady progress in the fabrication process has increased the possibility of practical application. In this paper, I will review the recent advances and the latest prospects for conductor applications of graphene centered on interconnects. The possibility of further application utilizing the unique characteristics of graphene is discussed.

  • Low-Temperature Deposition of Yttrium Oxide on Flexible PET Films Using Time-Separated Yttrium Precursor and Oxidizer Injections

    Kentaro SAITO  Kazuki YOSHIDA  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    604-609

    Low-temperature deposition of Y2O3 at 80°C is studied using an yttrium precursor of tris(butylcyclopentadienyl)yttrium (Y(BuCp)3) and plasma exited humidified argon oxidizer. The deposition is demonstrated using an atomic-layer-deposition sequence; the Y(BuCp)3 and the oxidizing gases are time separately introduced to the reaction chamber and these injections are repeated. To determine the gas introduction conditions, surface reactions of Y(BuCp)3 adsorption and its oxidization are observed by an in-situ IR absorption spectroscopy. The deposited film is confirmed as fully oxidized Y2O3 by X-ray photoelectron spectroscopy. The present deposition is applicable for the deposition of Y2O3 film on flexible polyethylene terephthalate films.

  • Low-Temperature Atomic Layer Deposition of AlN Using Trimethyl Aluminum and Plasma Excited Ar Diluted Ammonia

    Kentaro SAITO  Kazuki YOSHIDA  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    596-603

    The low temperature deposition of AlN at 160 °C is examined by using trimethyl aluminum (TMA) and NH radicals from plasma excited Ar diluted ammonia. For the deposition, a plasma tube separated from the reaction chamber is used to introduce the neutral NH radicals on the growing surface without the direct impacts of high-speed species and UV photons, which might be effective in suppressing the plasma damage to the sample surfaces. To maximize the NH radical generation, the NH3 and Ar mixing ratio is optimized by plasma optical emission spectroscopy. To determine the saturated condition of TMA and NH radical irradiations, an in-situ surface observation of IR absorption spectroscopy (IRAS) with a multiple internal reflection geometry is utilized. The low temperature AlN deposition is performed with the TMA and NH radical exposures whose conditions are determined by the IRAS experiment. The spectroscopic ellipsometry indicates the all-round surface deposition in which the growth per cycles measured from front and backside surfaces of the Si sample are of the same range from 0.39∼0.41nm/cycle. It is confirmed that the deposited film contains impurities of C, O, N although we discuss the method to decrease them. X-ray diffraction suggests the AlN polycrystal deposition with crystal phases of AlN (100), (002) and (101). From the saturation curves of TMA adsorption and its nitridation, their chemical reactions are discussed in this paper. In the present paper, we discuss the possibility of the low temperature AlN deposition.

  • Room Temperature Atomic Layer Deposition of Nano Crystalline ZnO and Its Application for Flexible Electronics

    Kazuki YOSHIDA  Kentaro SAITO  Keito SOGAI  Masanori MIURA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER-Electronic Materials

      Pubricized:
    2020/11/26
      Vol:
    E104-C No:7
      Page(s):
    363-369

    Nano crystalline zinc oxide (ZnO) is deposited by room temperature atomic layer deposition (RT-ALD) using dimethylzinc and a plasma excited humidified Ar without thermal treatments. The TEM observation indicated that the deposited ZnO films were crystallized with grain sizes of ∼20 nm on Si in the course of the RT-ALD process. The crystalline ZnO exhibited semiconducting characteristics in a thin film transistor, where the field-effect mobility was recorded at 1.29×10-3cm2/V·s. It is confirmed that the RT deposited ZnO film has an anticorrosion to hot water. The water vapor transmission rate of 8.4×10-3g·m-2·day-1 was measured from a 20 nm thick ZnO capped 40 nm thick Al2O3 on a polyethylene naphthalate film. In this paper, we discuss the crystallization of ZnO in the RT ALD process and its applicability to flexible electronics.

  • Transparent Glass Quartz Antennas on the Windows of 5G-Millimeter-Wave-Connected Cars

    Osamu KAGAYA  Yasuo MORIMOTO  Takeshi MOTEGI  Minoru INOMATA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    64-72

    This paper proposes a transparent glass quartz antenna for 5G-millimeter-wave-connected vehicles and clarifies the characteristics of signal reception when the glass antennas are placed on the windows of a vehicle traveling in an urban environment. Synthetic fused quartz is a material particularly suited for millimeter-wave devices owing to its excellent low transmission loss. Realizing synthetic fused quartz devices requires accurate micromachining technology specialized for the material coupled with the material technology. This paper presents a transparent antenna comprising a thin mesh pattern on a quartz substrate for installation on a vehicle window. A comparison of distributed transparent antennas and an omnidirectional antenna shows that the relative received power of the distributed antenna system is higher than that of the omnidirectional antenna. In addition, results show that the power received is similar when using vertically and horizontally polarized antennas. The design is verified in a field test using transparent antennas on the windows of a real vehicle.

  • Study on Analysis and Fabrication Conditions of Horizontal SiO2 Slot Waveguides Using Nb2O5

    Yoshiki HAYAMA  Katsumi NAKATSUHARA  Shinta UCHIBORI  Takeshi NISHIZAWA  

     
    PAPER

      Pubricized:
    2020/06/05
      Vol:
    E103-C No:11
      Page(s):
    669-678

    Horizontal slot waveguides enable light to be strongly confined in thin regions. The strong confinement of light in the slot region offers the advantages of enhancing the interaction of light with matter and providing highly sensitive sensing devices. We theoretically investigated fundamental characteristics of horizontal slot waveguides using Nb2O5. The coupling coefficient between SiO2 slot and air slot waveguides was calculated. Characteristics of bending loss in slot waveguide were also analyzed. The etching conditions in reactive ion etching needed to obtain a sidewall with high verticality were studied. We propose a process for fabricating horizontal slot waveguides using Nb2O5 thin film deposition and selective etching of SiO2. Horizontal slot waveguides were fabricated that had an SiO2 slot of less than 30 nm SiO2. The propagated light passing through the slot waveguides was also obtained.

  • Electrophoretic Co-Deposition of Alumina-Resin Composites on Metal Substrate Using Polydimethylsiloxane-Based Organic-Inorganic Hybrid Materials as Binders

    Yusuke AOKI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    199-202

    Electrophoretic deposition (EPD) usingpolydimethylsiloxane(PDMS)-based organic-inorganic hybrid materials as binders can be used to prepare alumina-binder composites on metal substrates. Herein, we investigated the deposition mechanism of PDMS-based polymers. The composition and porosity of EPD composites can be controlled by adjusting the EPD condition, and shape of alumina particles.

  • GaN-Based Light-Emitting Diodes with Graphene Buffers for Their Application to Large-Area Flexible Devices Open Access

    Jitsuo OHTA  Jeong Woo SHON  Kohei UENO  Atsushi KOBAYASHI  Hiroshi FUJIOKA  

     
    INVITED PAPER

      Vol:
    E100-C No:2
      Page(s):
    161-165

    Crystalline GaN films can be grown even on amorphous substrates with the use of graphene buffer layers by pulsed sputtering deposition (PSD). The graphene buffer layers allowed us to grow highly c-axis-oriented GaN films at low substrate temperatures. Full-color GaN-based LEDs can be fabricated on the GaN/graphene structures and they are operated successfully. This indicates that the present technique is promising for future large-area light-emitting displays on amorphous substrates.

  • Vapor-Deposition Polymerization of Vinyl Polymer Thin Films of Naphthalene Diimide Derivatives

    Keisuke TOMIDA  Hiroshi FUJITA  Satoshi USUI  Kuniaki TANAKA  Hiroaki USUI  

     
    BRIEF PAPER

      Vol:
    E100-C No:2
      Page(s):
    141-144

    Thin films of vinyl derivatives of naphthalene diimide were prepared by electron-assisted vapor deposition. Monomer materials of N, N'-bis(allyl)-naphthalene diimide (Allyl-NDI) and N,N'-bis(p-vinyl-benzyl)-naphthalene diimide (Sty-NDI) were newly synthesized for this purpose. Uniform films were obtained by vapor-depositing these materials, whereas spin-coating yielded nonuniform films. IR analysis suggested that Sty-NDI can be polymerized upon vapor deposition. An insoluble film of Sty-NDI was obtained by the electron-assisted vapor deposition. On the other hand, Allyl-NDI had lower reactivity for polymerization. It was concluded that Sty-NDI is a promising material for preparing thin films of vinyl polymer having naphthalene diimide units.

  • Quasi-Black Mask for Low-Cost LCDs by Patterned Alignment Films Formed by an Electro-Spray Deposition Method Open Access

    Yukihiro KUDOH  Yuta UCHIDA  Taiju TAKAHASHI  

     
    INVITED PAPER

      Vol:
    E99-C No:11
      Page(s):
    1244-1248

    A black mask (BM) is a layer used to improve the display quality by suppressing light leakage. In general, the BM is formed by a photolithography process. In this study, a novel technique for the fabrication of a quasi-black mask (q-BM) is proposed; the q-BM was composed of vertical and hybrid orientation areas, patterned by a separation coating technique using an electro-spray deposition method. Using our technique, the q-BM can be formed easily without the additional masks used for the BM.

  • Transparent Organic Light-Emitting Diodes with Top Electrode Using Ion-Plating Method

    Hironao SANO  Ryota ISHIDA  Tatsuya KURA  Shunsuke FUJITA  Shigeki NAKA  Hiroyuki OKADA  Takeshi TAKAI  

     
    BRIEF PAPER

      Vol:
    E98-C No:11
      Page(s):
    1035-1038

    Transparent organic light-emitting diodes (TOLEDs) were investigated with top electrode of indium-tin-oxide (ITO) by ion-plating method. High deposition rate of 4.4 nm/s was realized without plasma damage of under organic layer. In the TOLEDs with inverted structure, high transmittance of over 75% at 550 nm and bright emission of 1,850 and 1,410 cd/m2, from bottom and top side at 163 mA/cm2, respectively, were obtained.

  • Surface Potential Measurement of Organic Multi-layered Films on Electrodes by Kelvin Probe Force Microscopy

    Nobuo SATOH  Shigetaka KATORI  Kei KOBAYASHI  Kazumi MATSUSHIGE  Hirofumi YAMADA  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    91-97

    We have investigated both the film thickness and surface potential of organic semiconductors deposited on two kinds of electrodes by the simultaneous observation with the dynamic force microscopy (DFM)/Kelvin-probe force microscope (KFM). To clarify the interfacial properties of organic semiconductor, we fabricated samples that imitated the organic light emitting diode (OLED) structure by depositing bis [$N,N '$-(1-naphthyl)-$N,N '$-phenyl] benzidine ($alpha$-NPD) and tris (8-hydroxyquinolinato) aluminum (Alq$_{3}$), respectively, on indium-tin-oxide (ITO) as anode and aluminum (Al) as cathode by the vacuum evaporation deposition using intersecting metal shadow masks. This deposition technique enables us to fabricate four different areas in the same substrate. The crossover area of the deposited thin films were measured by the DFM/KFM, the energy band diagrams were depicted and we considered that the charge behavior of the organic semiconductor depended on the material and the structure.

  • Vapor Deposition Polymerization of Polyimide with Naphthalene Unit

    Ryosuke KIKUCHI  Satoshi USUI  Kuniaki TANAKA  Hiroaki USUI  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    129-132

    Polyimide thin films were prepared by vapor-deposition polymerization. Naphthalene carboxylic dianhydride (NTCDA) was coevaporated with either diamino naphthalene (DAN) or diamino benzophenone (DAB). Coevaporation of dianhydride and diamines yielded thin films of polyamic acids. A polyimide thin film was obtained by annealing the codeposited film of NTCDA-DAB. On the other hand, the codeposited film of NTCDA-DAN was not imidized by annealing. In both cases, chemical structures of the products were not largely influenced by the molar ratio of depositing monomers if sufficient amount of diamine molecules are supplied in the coevaporation process.

  • Evaluation of a PAH/PSS Layer-by-Layer Deposited Film Using a Quartz-Crystal-Microbalance and Surface-Plasmon-Resonance Hybrid Sensor

    Keisuke KAWACHI  Kazunari SHINBO  Yasuo OHDAIRA  Akira BABA  Keizo KATO  Futao KANEKO  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    136-138

    A quartz-crystal-microbalance (QCM) and surface-plasmon-resonance (SPR) hybrid sensor was prepared, and the depositions of polymer electrolytes layer-by-layer (LbL) films were observed in situ. The estimated thicknesses obtained from the QCM method were different from those obtained from the SPR method. This was estimated to be caused by film swelling and water contained in the film.

  • Fabrication of Step-Edge Vertical-Channel Organic Transistors by Selective Electro-Spray Deposition

    Hiroshi YAMAUCHI  Shigekazu KUNIYOSHI  Masatoshi SAKAI  Kazuhiro KUDO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    80-85

    Step-edge vertical channel organic field-effect transistors (SVC-OFETs) with a very short channel have been fabricated by a novel selective electrospray deposition (SESD) method. We propose the SESD method for the fabrication of SVC-OFETs based on a 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) semiconductor layer formed by SESD. In the SESD method, an electric field is applied between the nozzle and selective patterned electrodes on a substrate. We demonstrated that the solution accumulates on the selected electrode pattern by controlling the voltage applied to the electrode.

  • Selective Growth of Self-Assembling Si and SiGe Quantum Dots

    Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E97-C No:5
      Page(s):
    393-396

    We have succeeded in highly selective growth and positioning of Si- and SiGe-quantum-dots (QDs) on SiO2 patterns by controlling the reactive area, whose surface is terminated with OH bonds for Si nucleation in low-pressure chemical vapor deposition (LPCVD). The selective growth of QDs on thermally grown SiO2 line-patterns was demonstrated in LPCVD of SiH4 and GeH4 just after Si nucleation by controlling the early stages of Si2H6-LPCVD, which indicates effectively enhanced initial nucleation on OH-terminated SiO2 surface and suppression of the nucleation and growth of dots on as-grown SiO2 surface during Si2H6-LPCVD prior to SiH4-LPCVD.

  • Temporal Change in Electric Potential Distribution and Film Thickness in Electrophoretic Deposition of Conjugated Polymer

    Kazuya TADA  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    378-380

    It has been reported that the temporal change of current during the deposition shows a plateau and a break, similar to those found in a photocurrent profile taken by the time-of-flight technique for the investigation of photocarrier dynamics in condensed matters, enabling the estimation of electrophoretic mobility of colloidal particles in the suspension. The estimation of the electrophoretic mobility from transient current during the deposition by the simple drift model is based on the assumption that a constant electric field is uniformly applied between the positive and negative electrodes. Therefore, it is important to check if this assumption is satisfied. It is also important to measure the temporal evolution of film thickness, because this may give information about uniformity of colloidal size in the suspension. This study addresses these topics and validity of the assumption is confirmed.

  • Reduced Surface Roughness of P3HT:PCBM Thin Films with Different Ratios by Electrospray Deposition Methods

    Takeshi FUKUDA  Kenji TAKAGI  Norihiko KAMATA  Jungmyoung JU  Yutaka YAMAGATA  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    362-364

    We demonstrated the reduced surface roughness of poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) thin films with different ratios fabricated by the electrospray deposition (ESD) method. Aggregated structures were observed at the lower voltage, and the uniformity became bad at the higher voltage. Anyway, the minimum root mean square (RMS) roughness was 1.46 nm by optimizing the applied voltage.

  • Improvement of Adhesion Strength of Fluoropolymer Thin Films by Vapor Deposition Polymerization

    Kazuo SENDA  Tsuyoshi MATSUDA  Kuniaki TANAKA  Hiroaki USUI  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    374-377

    Fluoropolymer thin films were prepared by the ion-assisted vapor deposition polymerization (IAD) of 2-(perfluorohexyl)ethylacrylate (Rf-6). The adhesion strength of the film to substrates was estimated by sonicating the films in water and by immersing the films into dichloro-pentafluoro propane (HCFC225). The Rf-6 polymer films by IAD showed stronger adhesion to glass compared to a spin-coated Teflon AF film. The adhesion strength was improved with increasing ion energy Eion of IAD. The IAD films showed superior adhesion to PET surface compared to the glass substrate. The Rf-6 polymer film was effective as a single-layer antireflective coating. The refractive index of the film was 1.368 (λ = 546 nm), which increased slightly with increasing Eion. IAD can be a promising method to prepare fluoropolymer thin films due to the solvent-less process and the flexibility in controlling the film characteristics by the ion energy.

1-20hit(60hit)