The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] diff(926hit)

301-320hit(926hit)

  • A 0.7-V Opamp in Scaled Low-Standby-Power FinFET Technology

    Shin-ichi O'UCHI  Kazuhiko ENDO  Takashi MATSUKAWA  Yongxun LIU  Tadashi NAKAGAWA  Yuki ISHIKAWA  Junichi TSUKADA  Hiromi YAMAUCHI  Toshihiro SEKIGAWA  Hanpei KOIKE  Kunihiro SAKAMOTO  Meishoku MASAHARA  

     
    PAPER

      Vol:
    E95-C No:4
      Page(s):
    686-695

    This paper demonstrates a FinFET operational amplifier (opamp), which is suitable to be integrated with digital circuits in a scaled low-standby-power (LSTP) technology and operates at extremely low voltage. The opamp is consisting of an adaptive threshold-voltage (Vt) differential pair and a low-voltage source follower using independent-double-gate- (IDG-) FinFETs. These two components enable the opamp to extend the common-mode voltage range (CMR) below the nominal Vt even if the supply voltage is less than 1.0 V. The opamp was implemented by our FinFET technology co-integrating common-DG- (CDG-) and IDG-FinFETs. More than 40-dB DC gain and 1-MHz gain-bandwidth product in the 500-mV-wide input CMR at the supply voltage of 0.7 V was estimated with SPICE simulation. The fabricated chip successfully demonstrated the 0.7-V operation with the 480-mV-wide CMR, even though the nominal Vt was 400 mV.

  • Estimation of Surface Waves along a Metal Grating Using an Equivalent Impedance Model

    Michinari SHIMODA  Toyonori MATSUDA  Kazunori MATSUO  Yoshitada IYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E95-C No:4
      Page(s):
    717-724

    The cause-and-effect relation between plasmon-resonance absorption and surface wave in a sinusoidal metal grating is investigated. By introducing an equivalent impedance model, similar to an equivalent circuit on an electric circuit, which is an impedance boundary value problem on the fictitious surface over the grating, we estimate the surface wave from the eigen field of the model by using the resonance property of the scattered field. Through numerical examples, we illustrate that the absorption in the grating occurs in the condition of exciting the surface wave along the model, and the real part of the surface impedance is negative on about half part of the fictitious surface in the condition.

  • Depth Enhancement Considering Just Noticeable Difference in Depth

    Seung-Won JUNG  Sung-Jea KO  

     
    LETTER-Image

      Vol:
    E95-A No:3
      Page(s):
    673-675

    Recent advances in 3-D technologies draw an interest on the just noticeable difference in depth (JNDD) that describes a perceptual threshold of depth differences. In this letter, we address a new application of the JNDD to the depth image enhancement. In the proposed algorithm, a depth image is first segmented into multiple layers and then the depth range of the layer is expanded if the depth difference between adjacent layers is smaller than the JNDD. Therefore, viewers can effectively perceive the depth differences between layers and thus the human depth perception can be improved. The proposed algorithm can be applied to any depth-based 3-D display applications.

  • Phase Demodulation of DPSK Signals Using Dual-Bus Coupled Silicon Micro-Ring Resonator

    Rai KOU  Sungbong PARK  Tai TSUCHIZAWA  Hiroshi FUKUDA  Hidetaka NISHI  Hiroyuki SHINOJIMA  Koji YAMADA  

     
    PAPER

      Vol:
    E95-C No:2
      Page(s):
    224-228

    We demonstrate phase demodulation of 10-Gbps DPSK signals using a silicon micro-ring resonator with a radius of 10 µm and with various coupling gaps for light of ∼1550 nm in wavelength. Influence of the Q factors and transmissions of the resonators on the response speed and power balance of the two output ports is discussed. Furthermore, temperature sensitivity on resonance peak was measured and we discuss its effect on practical demodulation application.

  • A Mur Type Analytical Absorbing Boundary Condition for Multidimensional Wave Analysis with the Directional Splitting Technique

    Kensuke SASAKI  Yukihisa SUZUKI  

     
    BRIEF PAPER-Electromagnetic Theory

      Vol:
    E95-C No:2
      Page(s):
    309-312

    A Mur type analytical absorbing boundary condition (A-ABC), which is based on the one-dimensional one-way wave equation, is proposed for multidimensional wave analysis by introducing the directional splitting technique. This new absorbing boundary condition is expansion of the first-order Mur. The absorbing ability, required memory, and calculation speed of the Mur type A-ABC are evaluated by comparison with those of conventional ABCs. The result indicated that absorbing ability of the proposed ABC is higher than the first-order Mur and lower than the second-order Mur at large incident angle. While, our proposed ABC has advantage in both required memory and calculation speed by comparison with the second-order Mur. Thus, effectivity of the proposed Mur type A-ABC is shown.

  • CMOS Differential Circuits Using Charge-Redistribution and Reduced-Swing Schemes

    Hong-Yi HUANG  Shiun-Dian JAN  Yang CHOU  Cheng-Yu CHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    275-283

    The charge-redistribution low-swing differential logic (CLDL) circuits are presented in this work. It can implement a complex function in a single gate. The CLDL circuits utilizes the charge-redistribution and reduced-swing schemes to reduce the power dissipation and enhance the operation speed. In addition, a pipeline structure is formed by a series connection structure controlled by a true-single-phase clock, thereby achieving high-speed operation. The CLDL circuits perform more than 25% speedup and 31% in power-delay product compared to other differential circuits with true-single-phase clock. A pipelined multiplier-accumulator (MAC) using CLDL structure is fabricated in 0.35 µm single-poly four-metal CMOS process. The test chip is successfully verified to operate at 900-MHz.

  • Known-Key Attacks on Rijndael with Large Blocks and Strengthening ShiftRow Parameter

    Yu SASAKI  

     
    PAPER-Symmetric Cryptography

      Vol:
    E95-A No:1
      Page(s):
    21-28

    In this paper, we present known-key attacks on block cipher Rijndael for 192-bit block and 256-bit block. Our attacks work up to 8 rounds for 192-bit block and 9 rounds for 256-bit block, which are one round longer than the previous best known-key attacks. We then search for the parameters for the ShiftRow operation which is stronger against our attacks than the one in the Rijndael specification. Finally, we show a parameter for 192-bit block which forces attackers to activate more bytes to generate a truncated differential path, and thus enhances the security against our attacks.

  • On-Chip In-Place Measurements of Vth and Signal/Substrate Response of Differential Pair Transistors

    Yoji BANDO  Satoshi TAKAYA  Toru OHKAWA  Toshiharu TAKARAMOTO  Toshio YAMADA  Masaaki SOUDA  Shigetaka KUMASHIRO  Tohru MOGAMI  Makoto NAGATA  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:1
      Page(s):
    137-145

    In-place AC measurements of the signal gain and substrate sensitivity of differential pair transistors of an analog amplifier are combined with DC characterization of the threshold voltage (Vth) of the same transistors. An on-chip continuous time waveform monitoring technique enables in-place matrix measurements of differential pair transistors with a variety of channel sizes and geometry, allowing the wide coverage of experiments about the transistor-level physical layout dependency of substrate noise response. A prototype test structure uses a 90-nm CMOS technology and demonstrates the geometry-dependent variation of substrate sensitivity of transistors in operation.

  • Indifferentiable Security Reconsidered: Role of Scheduling

    Kazuki YONEYAMA  

     
    PAPER-Formal Approach

      Vol:
    E95-A No:1
      Page(s):
    185-195

    In this paper, the substitutability of the indifferentiability framework with non-sequential scheduling is examined by reformulating the framework through applying the Task-PIOA framework, which provides non-sequential activation with oblivious task sequences. First, the indifferentiability framework with non-sequential scheduling is shown to be able to retain the substitutability. Thus, the substitutability can be applied in another situation that processes of the systems may behave non-sequentially. Next, this framework is shown to be closely related to reducibility of systems. Reducibility is useful to discuss about the construction of a system from a weaker system. Finally, two modelings with respectively sequential scheduling and non-sequential scheduling are shown to be mutually independent. We find examples of systems which are indifferentiable under one model but differentiable under the other. Thus, the importance of scheduling in the indifferentiability framework is clarified.

  • Method of Image Green's Function in Grating Theory

    Junichi NAKAYAMA  Yasuhiko TAMURA  

     
    BRIEF PAPER-Periodic Structures

      Vol:
    E95-C No:1
      Page(s):
    93-96

    This paper deals with the diffraction of a transverse magnetic (TM) plane wave by a perfectly conductive periodic surface by an integral method. However, it is known that a conventional integral method does not work for a critical angle of incidence, because of divergence of a periodic Green's function (integral kernel). To overcome such a divergence difficulty, we introduce an image Green's function which is physically defined as a field radiated from an infinite phased array of dipoles. By use of the image Green's function, it is newly shown that the diffracted field is represented as a sum of radiation from the periodic surface and its image surface. Then, this paper obtains a new image integral equation for the basic surface current, which is solved numerically. A numerical result is illustrated for a very rough sinusoidal surface. Then, it is concluded that the method of image Green's function works practically even at a critical angle of incidence.

  • High Frequency Ray-Mode Coupling Analysis of Plane Wave Diffraction by a Wide and Thick Slit on a Conducting Screen

    Hiroshi SHIRAI  Ryoichi SATO  

     
    PAPER-Scattering and Diffraction

      Vol:
    E95-C No:1
      Page(s):
    10-15

    Diffraction field by a wide and thick slit on a conducting screen has been analyzed. High frequency ray-mode coupling analysis has been utilized, and the total diffracted or radiated field in each region is considered as a summation of successive modal radiation contribution due to the original modal excitation by the incident plane wave. Our derived results are compared with those obtained by other solutions, and good agreement has been observed, and the validity of our formulation is confirmed.

  • Differential Fault Analysis on Stream Cipher MUGI

    Junko TAKAHASHI  Toshinori FUKUNAGA  Kazuo SAKIYAMA  

     
    PAPER-Implementation

      Vol:
    E95-A No:1
      Page(s):
    242-251

    This paper proposes a differential fault analysis on the stream cipher MUGI, which uses two kinds of update functions of an intermediate state. MUGI was proposed by Hitachi, Ltd. in 2002 and is specified as ISO/IEC 18033-4 for keystream generation. Differential fault analysis (DFA) is a type of fault analysis, which is considered to be a serious threat against secure devices such as smart cards. DFA on MUGI was first proposed at ICISC 2010 [25]; however, the attack condition for the successful attack such as the position into which the fault is injected was restricted. In this paper, we extend the attack methods which are more practical, based on a one-byte and a multi-byte fault models using the relationship between two kinds of update functions that are mutually dependent. In the proposed attack, the attacker can know the position affected by the fault injection even if he has no control of the timing of the fault injection. As a result, a 128-bit secret key can be recovered using 13 pairs of correct and faulty outputs on average.

  • Kobayashi Potential in Electromagnetism Open Access

    Kohei HONGO  Hirohide SERIZAWA  

     
    INVITED PAPER

      Vol:
    E95-C No:1
      Page(s):
    3-9

    The Kobayashi potential in electromagnetic theory is reviewed. As an illustration we consider two problems, diffraction of plane wave by disk and rectangular plate of perfect conductor. Some numerical results are compared with approximated and experimental results when they are available to verify the validity of the present method. We think the present method can be used as reference solutions of the related problems.

  • A Tracking System Using a Differential Detector for M-ary Bi-orthogonal Spread Spectrum Communication Systems

    Junya KAWATA  Kouji OHUCHI  Hiromasa HABUCHI  

     
    PAPER

      Vol:
    E94-A No:12
      Page(s):
    2737-2745

    As an application of the direct sequence spread spectrum (SS) communication system, there is an M-ary bi-orthogonal SS communication system. In its system, several spreading sequences (bi-orthogonal sequences) are used in a code shift keying basis. Hence, design of the spreading code synchronization system has been an issue in the M-ary bi-orthogonal SS systems. In this paper, the authors focus on a code tracking system using a differential detector and a Delay Lock Loop (DLL). They investigate a tracking performance of their code tracking system by theoretical analysis. In addition, a multi-stage interference canceler is applied to the M-ary bi-orthogonal SS system. As the result, it is shown that the tracking performance of the theoretical analysis is almost the same as that of computer simulations in a multi-user environment. It is also shown that the multi-stage interference canceler is effective in improvement of the BER performance.

  • Packet Scheduling and Traffic Differentiation in Femtocell Environment

    Volkan SEVINDIK  Oguz BAYAT  

     
    PAPER-Network

      Vol:
    E94-B No:11
      Page(s):
    3018-3025

    This paper proposes new scheduling algorithms for best effort (BE) traffic classification in business femtocell networks. The purpose of traffic classification is to provide differentiated services to BE users depending on their traffic classes, and the concept of traffic classification is called Inter User Best Effort (IUBE) in CDMA2000 1x Evolution Data Optimized (EVDO) standard. Traffic differentiation is achieved by introducing Grade of Service (GoS) as a quality of service (QoS) parameter into the scheduler's decision metric (DM). New scheduling algorithms are called QoS Round Robin (QoS-RR), QoS Proportionally Fair (QoS-PF), QoS maximum data rate control (DRC) (QoS-maxDRC), QoS average DRC (QoS-aveDRC), QoS exponent DRC (QoS-expDRC), QoS maxDRC-PF (QoS-maxDRC-PF). Two different femtocell throughput experiments are performed using real femtocell devices in order to collect real DRC values. The first experiment examines 4, 8, 12 and 16 IUBE users, while second experiment examines 4 IUBE + 2 Voice over IP (VoIP), 8 IUBE + 2 VoIP, 12 IUBE + 2 VoIP, 16 IUBE + 2 (VoIP) users. Average sector throughput, IUBE traffic differentiation, VoIP delay bound error values are investigated to compare the performance of the proposed scheduling algorithms. In conclusion, QoS-maxDRC-PF scheduler is proposed for business femtocell environment.

  • Secure Key Transfer Protocol Based on Secret Sharing for Group Communications Open Access

    Chia-Yin LEE  Zhi-Hui WANG  Lein HARN  Chin-Chen CHANG  

     
    INVITED PAPER

      Vol:
    E94-D No:11
      Page(s):
    2069-2076

    Group key establishment is an important mechanism to construct a common session key for group communications. Conventional group key establishment protocols use an on-line trusted key generation center (KGC) to transfer the group key for each participant in each session. However, this approach requires that a trusted server be set up, and it incurs communication overhead costs. In this article, we address some security problems and drawbacks associated with existing group key establishment protocols. Besides, we use the concept of secret sharing scheme to propose a secure key transfer protocol to exclude impersonators from accessing the group communication. Our protocol can resist potential attacks and also reduce the overhead of system implementation. In addition, comparisons of the security analysis and functionality of our proposed protocol with some recent protocols are included in this article.

  • Speech Enhancement Based on Adaptive Noise Power Estimation Using Spectral Difference

    Jae-Hun CHOI  Joon-Hyuk CHANG  Dong Kook KIM  Suhyun KIM  

     
    LETTER-Speech and Hearing

      Vol:
    E94-A No:10
      Page(s):
    2031-2034

    In this paper, we propose a spectral difference approach for noise power estimation in speech enhancement. The noise power estimate is given by recursively averaging past spectral power values using a smoothing parameter based on the current observation. The smoothing parameter in time and frequency is adjusted by the spectral difference between consecutive frames that can efficiently characterize noise variation. Specifically, we propose an effective technique based on a sigmoid-type function in order to adaptively determine the smoothing parameter based on the spectral difference. Compared to a conventional method, the proposed noise estimate is computationally efficient and able to effectively follow noise changes under various noise conditions.

  • A Study of Multiple Characteristics Differential Cryptanalysis

    Saeed SADEGHIAN  Babak SADEGHIYAN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E94-A No:10
      Page(s):
    2053-2058

    In this paper, we study how exploiting multiple differential characteristics with a common initial difference and different output differences improves the complexity of differential cryptanalysis attack. We call such an approach Multiple Differential Cryptanalysis. We describe such an attack rigorously by studying the probability distribution of multiple differential characteristics and giving an attack algorithm based on LLR statistic. We also present a statistical analysis on the attack complexity based on LLR probabilistic technique. Our analysis shows that the data complexity of the proposed attack decreases as the number of characteristics increases. We do an experiment with the described method to show its improvements through cryptanalyzing a reduced round PRESENT block cipher with 5 rounds.

  • The Constructions of Almost Binary Sequence Pairs and Binary Sequence Pairs with Three-Level Autocorrelation

    Xiuping PENG  Chengqian XU  Gang LI  Kai LIU  Krishnasamy Thiru ARASU  

     
    LETTER-Information Theory

      Vol:
    E94-A No:9
      Page(s):
    1886-1891

    In this letter, a new class of almost binary sequence pairs with a single zero element and three autocorrelation values is presented. The new almost binary sequence pairs are based on cyclic difference sets and difference set pairs. By applying the method to the binary sequence pairs, new binary sequence pairs with three-level autocorrelation are constructed. It is shown that new sequence pairs from our constructions are balanced or almost balanced and have optimal three-level autocorrelation when the characteristic sequences or sequence pairs of difference sets or difference set pairs are balanced or almost balanced and have optimal autocorrelations.

  • Construction of d-Form Sequences with Ideal Autocorrelation

    Tongjiang YAN  Xiaoni DU  Yuhua SUN  Guozhen XIAO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:8
      Page(s):
    1696-1700

    This correspondence contributes to some d-form functions and d-form sequences. A property of d-form functions is obtained firstly. Then we present a way to construct d-form sequences and extended d-form sequences with ideal autocorrelation. Based on our result, many sequences with ideal autocorrelation can be constructed by the corresponding difference-balanced d-form functions.

301-320hit(926hit)