The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

161-180hit(1407hit)

  • Analysis of a Plasmonic Pole-Absorber Using a Periodic Structure Open Access

    Junji YAMAUCHI  Shintaro OHKI  Yudai NAKAGOMI  Hisamatsu NAKANO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    495-500

    A plasmonic black pole (PBP) consisting of a series of touching spherical metal surfaces is analyzed using the finite-difference time-domain (FDTD) method with the periodic boundary condition. First, the wavelength characteristics of the PBP are studied under the assumption that the PBP is omnidirectionally illuminated. It is found that partial truncation of each metal sphere reduces the reflectivity over a wide wavelength range. Next, we consider the case where the PBP is illuminated with a cylindrical wave from a specific direction. It is shown that an absorptivity of more than 80% is obtained over a wavelength range of λ=500 nm to 1000 nm. Calculation regarding the Poynting vector distribution also shows that the incident wave is bent and absorbed towards the center axis of the PBP.

  • Chirp Control of Semiconductor Laser by Using Hybrid Modulation Open Access

    Mitsunari KANNO  Shigeru MIEDA  Nobuhide YOKOTA  Wataru KOBAYASHI  Hiroshi YASAKA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    561-565

    Frequency chirp of a semiconductor laser is controlled by using hybrid modulation, which simultaneously modulates intra-cavity loss and injection current to the laser. The positive adiabatic chirp of injection-current modulation is compensated with the negative adiabatic chirp created by intra-cavity-loss modulation, which enhances the chromatic-dispersion tolerance of the laser. A proof-of-concept transmission experiment confirmed that the hybrid modulation laser has a larger dispersion tolerance than conventional directly modulated lasers due to the negative frequency chirp originating from intra-cavity-loss modulation.

  • Reliable Position Estimation by Parallelized Processing in Kinematic Positioning for Single Frequency GNSS Receiver

    Hiromi IN  Hiroyuki HATANO  Masahiro FUJII  Atsushi ITO  Yu WATANABE  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:7
      Page(s):
    1083-1091

    Location information is meaningful information for future ITS (Intelligent Transport Systems) world. Especially, the accuracy of the information is required because the accuracy decides the quality of ITS services. For realization of high precision positioning, Kinematic positioning technique has been attracting attention. The Kinematic positioning requires the configuration of many positioning parameters. However, the configuration is difficult because optimal parameter differs according to user's environment. In this paper, we will propose an estimation method of optimal parameter according to the environment. Further, we will propose an elimination method of unreliable positioning results. Hereby, we can acquire extensively only the reliable positioning results. By using the actual vehicle traveling data, the ability and the applicable range of the proposed method will be shown. The result will show that our proposed method improves the acquision rate of reliable positioning results and mitigates the acquision rate of the unreliable positioning results.

  • A Unified Analysis of the Signal Transfer Characteristics of a Single-Path FET-R-C Circuit Open Access

    Tetsuya IIZUKA  Asad A. ABIDI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    432-443

    A frequently occurring subcircuit consists of a loop of a resistor (R), a field-effect transistor (FET), and a capacitor (C). The FET acts as a switch, controlled at its gate terminal by a clock voltage. This subcircuit may be acting as a sample-and-hold (S/H), as a passive mixer (P-M), or as a bandpass filter or bandpass impedance. In this work, we will present a useful analysis that leads to a simple signal flow graph (SFG), which captures the FET-R-C circuit's action completely across a wide range of design parameters. The SFG dissects the circuit into three filtering functions and ideal sampling. This greatly simplifies analysis of frequency response, noise, input impedance, and conversion gain, and leads to guidelines for optimum design. This paper focuses on the analysis of a single-path FET-R-C circuit's signal transfer characteristics including the reconstruction of the complete waveform from the discrete-time sampled voltage.

  • Accurate Error Probability Analysis of MCIK-OFDM with a Low-Complexity Detection over TWDP Fading Channels

    Donggu KIM  Hoojin LEE  Joonhyuk KANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/12/06
      Vol:
    E101-B No:6
      Page(s):
    1347-1351

    This paper derives highly accurate and effective closed-form formulas for the average upper bound on the pairwise error probability (PEP) of the multi-carrier index keying orthogonal frequency division multiplexing (MCIK-OFDM) system with low-complexity detection (i.e., greedy detection) in two-wave with diffuse power (TWDP) fading channels. To be specific, we utilize an exact moment generating function (MGF) of the signal-to-noise ratio (SNR) under TWDP fading to guarantee highly precise investigations of error probability performance; existing formulas for average PEP employ the approximate probability density function (PDF) of the SNR for TWDP fading, thereby inducing inherent approximation error. Moreover, some special cases of TWDP fading are also considered. To quantitatively reveal the achievable modulation gain and diversity order, we further derive asymptotic formulas for the upper bound on the average PEP. The obtained asymptotic expressions can be used to rapidly estimate the achievable error performance of MCIK-OFDM with the greedy detection over TWDP fading in high SNR regimes.

  • Energy Efficient Mobile Positioning System Using Adaptive Particle Filter

    Yoojin KIM  Yongwoon SONG  Hyukjun LEE  

     
    LETTER-Measurement Technology

      Vol:
    E101-A No:6
      Page(s):
    997-999

    An accurate but energy-efficient estimation of a position is important as the number of mobile computing systems grow rapidly. A challenge is to develop a highly accurate but energy efficient estimation method. A particle filter is a key algorithm to estimate and track the position of an object which exhibits non-linear movement behavior. However, it requires high usage of computation resources and energy. In this paper, we propose a scheme which can dynamically adjust the number of particles according to the accuracy of the reference signal for positioning and reduce the energy consumption by 37% on Cortex A7.

  • Quick-Start Pulse Width Controlled PLL with Frequency and Phase Presetting

    Toru NAKURA  Tsukasa KAGAYA  Tetsuya IIZUKA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    218-223

    This paper demonstrates a quick start method for Pulse-Width Controlled PLL (PWPLL). Our PLL converts the internal state into digital signals and stores them into a memory before getting into a sleep mode. The wakeup sequence reads the memory and presets the internal state so that our PLL can start the operation with close to the previously locked condition. Since the internal state includes not only the frequency control code but also the phase information, our quick start PLL locks in several clock cycles. A prototype chip fabricated in 0.18µm standard CMOS shows 50ns settling time (4 reference clock cycles), 18.5mW power consumption under 1.8V nominal supply voltage with 105µm×870µm silicon area.

  • A 28-GHz Fractional-N Frequency Synthesizer with Reference and Frequency Doublers for 5G Mobile Communications in 65nm CMOS

    Hanli LIU  Teerachot SIRIBURANON  Kengo NAKATA  Wei DENG  Ju Ho SON  Dae Young LEE  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    187-196

    This paper presents a 27.5-29.6GHz fractional-N frequency synthesizer using reference and frequency doublers to achieve low in-band and out-of-band phase-noise for 5G mobile communications. A consideration of the baseband carrier recovery circuit helps estimate phase noise requirement for high modulation scheme. The push-push amplifier and 28GHz balun help achieving differential signals with low out-of-band phase noise while consuming low power. A charge pump with gated offset as well as reference doubler help reducing PD noise resulting in low in-band phase noise while sampling loop filter helps reduce spurs. The proposed synthesizer has been implemented in 65nm CMOS technology achieving an in-band and out-of-band phase noise of -78dBc/Hz and -126dBc/Hz, respectively. It consumes only a total power of 33mW. The jitter-power figure-of-merit (FOM) is -231dB which is the highest among the state of the art >20GHz fractional-N PLLs using a low reference clock (<200MHz). The measured reference spurs are less than -80dBc.

  • Phase Locking and Frequency Tuning of Resonant-Tunneling-Diode Terahertz Oscillators

    Kota OGINO  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:3
      Page(s):
    183-185

    Phase locking with frequency tuning is demonstrated for a resonant-tunneling-diode terahertz oscillator integrated with a biased varactor diode. The tuning range of oscillation frequency is 606-613GHz. The phase noise in the output of the oscillator is transformed to amplitude noise, and fed back to the varactor diode together with bias voltage. The spectral linewidth at least <2Hz was obtained at the oscillation frequencies tuned by the bias voltage of the varactor diode.

  • Sequentially Iterative Equalizer Based on Kalman Filtering and Smoothing for MIMO Systems under Frequency Selective Fading Channels

    Sangjoon PARK  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    909-914

    This paper proposes a sequentially iterative equalizer based on Kalman filtering and smoothing (SIEKFS) for multiple-input multiple-output (MIMO) systems under frequency selective fading channels. In the proposed SIEKFS, an iteration consists of sequentially executed subiterations, and each subiteration performs equalization and detection procedures of the symbols transmitted from a specific transmit antenna. During this subiteration, all available observations for the transmission block are utilized in the equalization procedures. Furthermore, the entire soft estimate of the desired symbols to be detected does not participate in the equalization procedures of the desired symbols, i.e., the proposed SIEKFS performs input-by-input equalization procedures for a priori information nulling. Therefore, compared with the original iterative equalizer based on Kalman filtering and smoothing, which performs symbol-by-symbol equalization procedures, the proposed SIEKFS can also perform iterative equalization based on the Kalman framework and turbo principle, with a significant reduction in computation complexity. Simulation results verify that the proposed SIEKFS achieves suboptimum error performance as the size of the antenna configuration and the number of iterations increase.

  • Optimal Transmission Policy in Decoupled RF Energy Harvesting Networks

    Yu Min HWANG  Jun Hee JUNG  Yoan SHIN  Jin Young KIM  Dong In KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    516-520

    In this letter, we study a scenario based on decoupled RF energy harvesting networks (DRF-EHNs) that separate energy sources from information sources to overcome the doubly near-far problem and improve harvesting efficiency. We propose an algorithm to maximize energy efficiency (EE) while satisfying constraints on the maximum transmit power of the hybrid access point (H-AP) and power beacon (PB), while further satisfying constraints on the minimum quality of service and minimum amount of harvested power in multi-user Rayleigh fading channel. Using nonlinear fractional programming and Lagrangian dual decomposition, we optimize EE with four optimization arguments: the transmit power from the H-AP and PB, time-splitting ratio, and power-splitting ratio. Numerical results show that the proposed algorithm is more energy-efficient compared to baseline schemes.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Passive-Filter-Configuration-Based Reduction of Up-to-Several-Hundred-MHz EMI Noises in H-Bridge PWM Micro-Stepping Motor Driver Circuits

    Keonil KANG  Kyung-Young JUNG  Sang Won NAM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    104-111

    Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.

  • Particle Filtering Based TBD in Single Frequency Network

    Wen SUN  Lin GAO  Ping WEI  Hua Guo ZHANG  Ming CHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    521-525

    In this paper, the problem of target detection and tracking utilizing the single frequency network (SFN) is addressed. Specifically, by exploiting the characteristics of the signal in SFN, a novel likelihood model which avoids the measurement origin uncertain problem in the point measurement model is proposed. The particle filter based track-before-detect (PF-TBD) algorithm is adopted for the proposed SFN likelihood to detect and track the possibly existed target. The advantage of using TBD algorithm is that it is suitable for the condition of low SNR, and specially, in SFN, it can avoid the data association between the measurement and the transmitters. The performance of the adopted algorithm is examined via simulations.

  • Multi-Dimensional Radio Channel Measurement, Analysis and Modeling for High Frequency Bands Open Access

    Minseok KIM  Jun-ichi TAKADA  Kentaro SAITO  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    293-308

    In order to utilize higher frequency bands above 6GHz, which is an important technical challenge in fifth generation mobile systems, radio propagation channel properties in a large variety of deployment scenarios should be thoroughly investigated. The authors' group has been involved in a fundamental research project aimed at investigating multiple-input-multiple-output (MIMO) transmission performance and propagation channel properties at microwave frequency above 10GHz from 2009 to 2013, and since then they have been conducting measurement and modeling for high frequency bands. This paper aims at providing comprehensive tutorial of a whole procedure of channel modeling; multi-dimensional channel sounding, propagation channel measurement, analysis, and modeling, by introducing the developed MIMO channel sounders at high frequency bands of 11 and 60GHz and presenting some measurement results in a microcell environment at 11GHz. Furthermore, this paper identifies challenges in radio propagation measurements, and discusses current/future channel modeling issues as future works.

  • Frequency Dependency of Path Loss Between Different Floors in An Indoor Office Environment at UHF and SHF Bands

    Motoharu SASAKI  Minoru INOMATA  Wataru YAMADA  Naoki KITA  Takeshi ONIZAWA  Masashi NAKATSUGAWA  Koshiro KITAO  Tetsuro IMAI  

     
    PAPER-Propagation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    373-382

    This paper describes analytical results obtained for floor penetration loss characteristics and their frequency dependency by measurements in multiple frequency bands, including those above 6GHz, in an indoor office environment. Measurement and analysis results confirm that the floor penetration loss depends on two dominant components: the transmission path through floors, and the path traveling through the outside building. We also clarify that these dominant paths have different path loss characteristics and frequency dependency. The transmission path through floors rapidly attenuates with large inter-floor offsets and in high frequency bands. On the other hand, the path traveling through outside of the building attenuates monotonically as the frequency increases. Therefore, the transmission path is dominant at short inter-floor offsets and low frequencies, and the path traveling through the outside is dominant at high number of floors or high frequency. Finally, we clarify that the floor penetration loss depends on the frequency dependency of the dominant path on the basis of the path loss characteristics of each dominant path.

  • Simulation and Measurement of Properties of Metallic Photonic Crystal Point-Defect-Cavities with a Centrally-Loaded Rod

    Chun-Ping CHEN  Chenglong XIE  Tetsuo ANADA  Zejun ZHANG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:1
      Page(s):
    91-95

    Properties of a class of M-PhC (metallic-photonic-crystal) point-defect-cavities (PDCs) with a centrally-loaded rod are theoretically and experimentally investigated. After the computation of the resonant frequencies and Q-factors of the resonant modes, the PDCs are fabricated and experimentally measured to validate the simulation results.

  • A Minimum Energy Point Tracking Algorithm Based on Dynamic Voltage Scaling and Adaptive Body Biasing

    Shu HOKIMOTO  Tohru ISHIHARA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E100-A No:12
      Page(s):
    2776-2784

    Scaling the supply voltage (Vdd) and threshold voltage (Vth) for minimizing the energy consumption of processors dynamically is highly desired for applications such as wireless sensor network and Internet of Things (IoT). In this paper, we refer to the pair of Vdd and Vth, which minimizes the energy consumption of the processor under a given operating condition, as a minimum energy point (MEP in short). Since the MEP is heavily dependent on an operating condition determined by a chip temperature, an activity factor, a process variation, and a performance required for the processor, it is not very easy to closely track the MEP at runtime. This paper proposes a simple but effective algorithm for dynamically tracking the MEP of a processor under a wide range of operating conditions. Gate-level simulation of a 32-bit RISC processor in a 65nm process demonstrates that the proposed algorithm tracks the MEP under a situation that operating condition widely vary.

  • Optimal Frequency Scheduling for Cascaded Wireless Networks with Omni-Directional Full-Duplex Relays

    Feng LIU  Yanli XU  Conggai LI  Xuan GENG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:12
      Page(s):
    3071-3074

    The effect of the hidden terminal (HT) over multi-hop cascaded wireless networks with the omni-directional full-duplex relays will cause data collision. We allocate the frequency band among different hops in an orthogonal way based on link grouping strategy to avoid this HT problem. In order to maximize the achievable rate, an optimal frequency allocation scheme is proposed by boundary alignment. Performance analyses are provided and further validated by the simulation results.

  • Exponentially Weighted Distance-Based Detection for Radiometric Identification

    Yong Qiang JIA  Lu GAN  Hong Shu LIAO  

     
    LETTER-Measurement Technology

      Vol:
    E100-A No:12
      Page(s):
    3086-3089

    Radio signals show characteristics of minute differences, which result from various idiosyncratic hardware properties between different radio emitters. A robust detector based on exponentially weighted distances is proposed to detect the exact reference instants of the burst communication signals. Based on the exact detection of the reference instant, in which the radio emitter finishes the power-up ramp and enters the first symbol of its preamble, the features of the radio fingerprint can be extracted from the transient signal section and the steady-state signal section for radiometric identification. Experiments on real data sets demonstrate that the proposed method not only has a higher accuracy that outperforms correlation-based detection, but also a better robustness against noise. The comparison results of different detectors for radiometric identification indicate that the proposed detector can improve the classification accuracy of radiometric identification.

161-180hit(1407hit)