The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] order(489hit)

441-460hit(489hit)

  • A Predistortion Technique for DFB Laser Diodes in Lightwave CATV Transmission

    Hung-Tser LIN  Yao-Huang KAO  

     
    PAPER-Optical Communication

      Vol:
    E79-B No:11
      Page(s):
    1671-1676

    The multichannel distortions of direct modulated laser diode were studied from the view point of rate equations. A novel technique for compensating the composite second order distortion (CSO) was proposed. Meanwhile, the related calibration procedures were indicated. After the compensation, 10 dB improvement in CSO was obtained

  • Some Characteristics of Higher Order Neural Networks with Decreasing Energy Functions

    Hiromi MIYAJIMA  Shuji YATSUKI  Michiharu MAEDA  

     
    PAPER-Neural Nets and Human Being

      Vol:
    E79-A No:10
      Page(s):
    1624-1629

    This paper describes some dynamical properties of higher order neural networks with decreasing energy functions. First, we will show that for any symmetric higher order neural network which permits only one element to transit at each step, there are only periodic sequences with the length 1. Further, it will be shown that for any higher order neural network, with decreasing energy functions, which permits all elements to transit at each step, there does not exist any periodic sequence with the length being over k + 1, where k is the order of the network. Lastly, we will give a characterization for higher order neural networks, with the order 2 and a decreasing energy function each, which permit plural elements to transit at each step and have periodic sequences only with the lengh 1.

  • Scattering of a Plane Wave from a Thin Film with Volume Disorder*

    Lan GAO  Junich NAKAYAMA  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1327-1333

    This paper deals with the scattering of a plane wave from a two-dimensional random thin film. For a Gaussian random disorder, a first order solution is derived explicitly by a probabilistic method. It is then found that ripples appear in angular distributions of the incoherent scattering. Furthermore, the incoherent scattering is enhanced in the directions of backscattering and specular reflection. Physical processes that yield such an enhanced scattering are discussed. Numerical examples of the coherent and incoherent scattering are illustrated in figures.

  • Application of Blind Source Separation Techniques to Multi-Tag Contactless Identification Systems

    Yannick DEVILLE  Laurence ANDRY  

     
    PAPER-Sequence, Time Series and Applications

      Vol:
    E79-A No:10
      Page(s):
    1694-1699

    Electronic systems are progressively replacing mechanical devices or human operation for identifying people or objects in everyday-life applications. Especially, the contactless identification systems available today have several advantages, but they cannot handle easily several simultaneously present items. This paper describes a solution to this problem, based on blind source separation techniques. The effectiveness of this approach is experimentally demonstrated, especially by using a real-time DSP-based implementation of the proposed system.

  • A Direct Relation between Bezier and Polynomial Representation

    Mohamed IMINE  Hiroshi NAGAHASHI  Takeshi AGUI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E79-D No:9
      Page(s):
    1279-1285

    In this paper, a new explicit transformation method between Bezier and polynomial representation is proposed. An expression is given to approximate (n + 1) Bezier control points by another of (m + 1), and to perform simple and sufficiently good approximation without any additional transformation, such as Chebyshev polynomial. A criterion of reduction is then deduced in order to know if the given number of control points of a Bezier curve is reducible without error on the curve or not. Also an error estimation is given only in terms of control points. This method, unlike previous works, is more transparent because it is given in form of explicit expressions. Finally, we discuss some applications of this method to curve-fitting, order decreasing and increasing number of control points.

  • On the Effect of Scheduling in Test Generation

    Tomoo INOUE  Hironori MAEDA  Hideo FUJIWARA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E79-D No:8
      Page(s):
    1190-1197

    The order of faults which are targeted for test-pattern generation affects both of the processing time for test generation and the number of generated test-patterns. This order is referred to as a test generation schedule. In this paper, we consider the effect of scheduling in test generation. We formulate the test generation scheduling problem which minimizes the cost of testing. We propose schedulings based on test-pattern generation time, dominating probability and dominated probability, and analyze the effect of these schedulings. In the analysis, we show that the total test-pattern generation time and the total number of test-patterns can be reduced by the scheduling according to the descending order of dominating probability prior to the ascending order of test-pattern generation. This is confirmed by the experiments using ISCAS'85 benchmark circuits. Further, in the experiments, we consider eight schedulings, and show that the scheduling according to the ascending order of dominated probability is the most effective of them.

  • Quantitative Evaluation of Improved Global Interpolation in the Segmentation of Handwritten Numbers Overlapping a Border

    Satoshi NAOI  Misako SUWA  Maki YABUKI  

     
    PAPER-Segmentation

      Vol:
    E79-D No:5
      Page(s):
    456-463

    The global interpolation method we proposed can extract a handwritten alpha-numeric character pattern even if it overlaps a border. Our method interpolates blank segments in a character after borders are removed by evaluating segment pattern continuity and connectedness globally to produce characters with smooth edges. The main feature of this method is to evaluate global component label connectivity as pattern connectedness. However, it is impossible for the method to interpolate missing superpositioning loop segments, because they lack segment pattern continuity and they have already had global component label connectivity. To solve this problem, we improved the method by adding loop interpolation as a global evaluation. The evaluation of character segment continuity is also improved to achieve higher quality character patterns. There is no database of overlapping characters, so we also propose an evaluation method which generates various kinds of overlapping numerals from an ETL database. Experimental results using these generated patterns showed that the improved global interpolation method is very effective for numbers that overlap a border.

  • 1.9 GHz Si Direct Conversion Receiver IC for QPSK Modulation Systems

    Chikau TAKAHASHI  Ryuichi FUJIMOTO  Satoshi ARAI  Tetsuro ITAKURA  Takashi UENO  Hiroshi TSURUMI  Hiroshi TANIMOTO  Shuji WATANABE  Kenji HIRAKAWA  

     
    PAPER-Active Devices

      Vol:
    E79-C No:5
      Page(s):
    644-649

    A 1.9GHz direct conversion receiver(DCR) chip which integrates an LNA, I/Q mixers(MIX), active lowpass filters(LDF) and variable gain amplifiers(VGA) was fabricated. Because the DCR for QPSK modulation systems is sensitive to the 2nd-order nonlinearity, linearization techniques are adopted in MIX and LPF. The DCR chip was fabricated using a BiCMOS process, and the die size is 5.1 mm by 5.1mm. The chip can operate from 2.7 V supply voltage and consumes 165mW when all the functions are activated. Suppression of local signal radiation and the 2nd-order distortion indicate the feasibility of Si-based DCR for QPSK modulation systems such as PHS.

  • Cumulant-Based Blind Channel Equalization

    Ling CHEN  Hiroji KUSAKA  Masanobu KOMINAMI  

     
    LETTER-Digital Signal Processing

      Vol:
    E79-A No:5
      Page(s):
    727-730

    This study is aimed to derive a new theoretical solution for blind equalizers. Undr the common assumptions for this framework, it is found that the condition for blind equalization is directly associated with an eigenproblem, i.e. the tap coefficients of the equalizer appear as an eigenvector of a higher order statistics matrix. Computer simulations show that very fast convergence can be achieved based on the approach.

  • Moment Functions for Fast Discrete Wigner Trispectrum

    Pavol ZAVARSKY  Nobuo FUJII  

     
    PAPER-Digital Signal Processing

      Vol:
    E79-A No:4
      Page(s):
    560-568

    The local moment functions for discrete Wigner trispectrum are examined in ambiguity and in time-frequency domain. A concept of multiple and multidimensional circular convolution in frequency domain is introduced into the discrete Wigner higher order time-frequency signal representation of any order. It is shown that this concept based on the 1st order spectra of the signal offers an insight into the properties of inconsistent local moment functions and their representation both in ambiguity and time-frequency domain. It allows to prove that midfrequency crossterms of a multicomponent signal can not be removed by any generalized 4th order ambiguity function which employ kernel function in the ambiguity domain. It is shown, that the concept of multiple convolution in frequency domain can lead to the crossterm-reduced discete time-frequency representations of any order

  • The Complexity of the Optimal Variable Ordering Problems of a Shared Binary Decision Diagram

    Seiichiro TANI  Kiyoharu HAMAGUCHI  Shuzo YAJIMA  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E79-D No:4
      Page(s):
    271-281

    An ordered binary decision diagram (OBDD) is a directed acyclic graph for representing a Boolean function. OBDDs are widely used in various areas which require Boolean function manipulation, since they can represent efficiently many practical Boolean functions and have other desirable properties. However, there is very little theoretical research on the complexity of constructing an OBDD. In this paper, we prove that the optimal variable ordering problem of a shared BDD is NP-complete, and briefly discuss the approximation hardness of this problem and related OBDD problems.

  • Decoder Error Probability of Binary Linear Block Codes and Its Application to Binary Primitive BCH Codes

    Min-Goo KIM  Jae Hong LEE  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E79-A No:4
      Page(s):
    592-599

    McEliece and Swanson offerred an upper bound on the decorder error probability of Reed-Solomon codes. In this paper, we investigate the decorder error probability of binary linear block codes and verify its properties, and apply it to binary primitive BCH codes. It is shown that the decorder error probability of an (n,k,t) binary linear block code is determined by PE uniquely if it is a constant. We derive the decorder error probability of (n,k,t) binary primitive BCH codes with n=2m-1 and +1 and show that the decorder error probabilities of those codes are close to PE if codelengh is large and coderate is high. We also compute and analyze the decorder error probabilities of some binary primitive BCH codes.

  • Single Chip Implementation of MPEG2 Decoder for HDTV Level Pictures

    Takao ONOYE  Toshihiro MASAKI  Yasuo MORIMOTO  Yoh SATO  Isao SHIRAKAWA  Kenji MATSUMURA  

     
    PAPER

      Vol:
    E79-A No:3
      Page(s):
    330-338

    A single chip MPEG2 MP@HL Video decoder has been developed, which consists mainly of specific functional units and macroblock level pipeline buffers. A new organization is also devised for a set of off-chip frame memories and the interfaces associated with it. Owing to sophisticated I/O interfaces among functional units, the macroblock level pipeline in conjunction with different decording facilities attains a high throughput to such an extent as to decode HDTV images in real time. Moreover, a set of these functional units, pipeline buffers, and frame memory interfaces, together with a sequence controller, is integrated for the first time in a single chip, which has the total area of 8.8 9.2mm2 with a 0.6µm triple-mental CMOS technology, and dissipates 1.2 W from a single 3.3 V supply.

  • Order-Sorted Universes of Structured Objects

    Vilas WUWONGSE  Ekawit NANTAJEEWARAWAT  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E79-D No:2
      Page(s):
    143-149

    Aczel's theory of structured objects is extended under the assumption that a structured object may belong to a sort and that these sorts are partially ordered. Based on the assumption, the forms of required objects can be specified more precisely and concisely. The resulting theory provides a general principle for the construction of order-sorted ontologies and universes of structured objects. It is applicable to systems with structured objects, such as situation theory, feature-based grammars, knowledge representation, constraint logic programming and object-oriented systems.

  • Recursive Construction of the Systems Interpolating 1st- and 2nd-Order Information

    Kazumi HORIGUCHI  

     
    LETTER-Systems and Control

      Vol:
    E79-A No:1
      Page(s):
    134-137

    We present a recursive algorithm for constructing linear discrete-time systems which interpolate the desired 1st-and 2nd-order information. The recursive algorithm constructs a new system and connects it to the previous system in the cascade form every time new information is added. These procedures yield a practical realization of all the interpolants.

  • Implementation Techniques for Fast OBDD Dynamic Variable Reordering

    Hiroshige FUJII  

     
    PAPER

      Vol:
    E78-A No:12
      Page(s):
    1729-1734

    Ordered binary decision diagrams (OBDDs) have been widely used in many CAD applications as efficient data structures for representing and manipulating Boolean functions. For the efficient use of the OBDD, it is essential to find a good variable order, because the size of the OBDD heavily depends on its variable order. Dynamic variable reordering is a promising solution to the variable ordering problem of the OBDD. Dynamic variable reordering with the sifting algorithm is especially effective in minimizing the size of the OBDD and reduces the need to find a good initial variable order. However, it is very time-consuming for practical use. In this paper, we propose two new implementation techniques for fast dynamic variable reordering. One of the proposed techniques reduces the number of variable swaps by using the lower bound of the OBDD size, and the other accelerates the variable swap itself by recording the node states before the swap and the pivot nodes of the swap. By using these new techniques, we have achieved the speed-up ranging from 2.5 to 9.8 for benchmark circuits. These techniques have reduced the disadvantage of dynamic variable reordering and have made it more attractive for users.

  • Quantitative Evaluation of TMJ Sound by Frequency Analysis

    Hiroshi SHIGA  Yoshinori KOBAYASHI  

     
    LETTER

      Vol:
    E78-A No:12
      Page(s):
    1683-1688

    In order to evaluate quantitatively TMJ sound, TMJ sound in normal subject group, CMD patient group A with palpable sounds unknown to them, CMD patient group B with palpable sounds known to them, and CMD patient group C with audible sounds were detected by a contact microphone, and frequency analysis of the power spectra was performed. The power spectra of TMJ sound of normal subject group and patient group A showed patterns with frequency values below 100 Hz, whereas the power spectra of patient groups B and C showed distinctively different patterns with peaks of frequency component exceeding 100 Hz. As regards the cumulative frequency value, the patterns for each group clearly differed from those of other groups; in particular the 80% cumulative frequency value showed the greatest difference. From these results, it is assumed that the 80% cumulative frequency value can be used as an effective indicator for quantitative evaluation of TMJ sound.

  • Practical Program Validation for State-Based Reactive Concurrent Systems--Harmonization of Simulation and Verification--

    Naoshi UCHIHIRA  Hideji KAWATA  

     
    PAPER

      Vol:
    E78-A No:11
      Page(s):
    1487-1497

    This paper proposed a practical method of program validation for state-based reactive concurrent systems. The proposed method is of particular relevance to plant control systems. Plant control systems can be represented by extended state transition systems (e.g., communicating asynchronous transition systems). Our validation method is based on state space analysis. Since naive state space analysis causes the state explosion problem, techniques to ease state explosion are necessary. One of the most promising techniques is the partial order method. However, these techniques usually require some structural assumptions and they are not always effective for actual control systems. Therefore, we claim integration and harmonization of verification (i.e., state space analysis based on the partial order method) and simulation (i.e., conventional validation technique). In the proposed method, verification is modeled as exhaustive simulation over the state space, and two types of simulation management techniques are introduced. One is logical selection (pruning) based on the partial order method. The other is heuristic selection based on priority (a priori precedence) specified by the user. In order to harmonize verification (logical selection) and conventional simulation (heuristic selection), we propose a new logical selection mechanism (the default priority method). The default priority method which prunes redundant state generation based on default priority is in harmony with heuristic selection based on the user's priority. We have implemented a practical validation tool, Simulation And Verification Environment for Reactive Concurrent Systems (SAVE/RCS), and applied it to chemical plant control systems.

  • Control Problem of a Class of Pushdown Automata Based on Posets and Its Application to Resolution Deductions

    Susumu YAMASAKI  

     
    PAPER-Automata, Languages and Theory of Computing

      Vol:
    E78-D No:11
      Page(s):
    1488-1497

    In this paper, a pushdown automaton, with an infinite set of states as a partially ordered set (poset), is formulated, and its control problem of whether a given configuration can be transferred to another is discussed. For the controllability to be decidable, we take a condition the poset satisfies, that is, a condition that there are only finite number of states under the partial ordering between two given states. The control problem is decidable in polynomial time on condition the length of each pushed stack string is bounded by a constant in a given pushdown automaton. The motivation of considering the control problem comes up from the stack structure in implementing the SLD resolution deductions, in which the leftmost atom in each goal is selected and unified with some procedure name (that is, some head) of a definite clause, with the effect of the procedure name being replaced by the procedure bodies and unifications. Thus, the control problem is applied to describe the SLD resolution deductions of finite steps, by constructing a pushdown automaton model for a set of definite clauses, in which leftmost selection of atom in each goal forms a stack structure and substitutions affecting goals are interpreted as states. When constructing a pushdown automaton model for an SLD resolution deduction, algebraic properties of the idempotent substitution set, which are used in unifications, are examined and utilized. The quotient set of the idempotent substitution set per renamings is adopted to present the automaton model.

  • Statistical Analysis of a Simple Constrained High-Order Yule-Walker Tone Frequency Estimator

    Yegui XIAO  Yoshiaki TADOKORO  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:10
      Page(s):
    1415-1418

    In this work, a statistical analysis is performed for a simple constrained high-order Yule-Walker (YW) tone frequency estimator obtained from the first equation of the constrained high-order YW equations. Explicit expressions for its estimation bias and variance are efficiently derived by virtue of a Taylor series expansion technique. Especially, being explicit in terms of frequency, data length and Signal-to-Noise Ratio (SNR) value, the resulting bias expression can not be obtained by using the asymptotic analyses used for the parameter estimation methods. The obtained expressions are compared with their counterparts of the Pisarenko tone frequency estimator. Simulations are performed to support the theoretical results.

441-460hit(489hit)