The search functionality is under construction.

Keyword Search Result

[Keyword] phase(869hit)

41-60hit(869hit)

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • Quantum-Noise-Limited BPSK Transmission Using Gain-Saturated Phase-Sensitive Amplifiers

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/04/14
      Vol:
    E104-B No:10
      Page(s):
    1268-1276

    Quantum noise ultimately restricts the transmission distance in fiber communication systems using optical amplifiers. This paper investigates the quantum-noise-limited performance of optical binary phase-shift keying transmission using gain-saturated phase-sensitive amplifiers (PSAs) as optical repeaters. It is shown that coherent state transmission, where ultimately clean light in the classical sense is transmitted, and endless transmission, where the transmission distance is not restricted, are theoretically achievable under certain system conditions owing to the noise suppression effects of the gain-saturated PSA.

  • A Noise-Canceling Charge Pump for Area Efficient PLL Design Open Access

    Go URAKAWA  Hiroyuki KOBAYASHI  Jun DEGUCHI  Ryuichi FUJIMOTO  

     
    PAPER

      Pubricized:
    2021/04/20
      Vol:
    E104-C No:10
      Page(s):
    625-634

    In general, since the in-band noise of phase-locked loops (PLLs) is mainly caused by charge pumps (CPs), large-size transistors that occupy a large area are used to improve in-band noise of CPs. With the high demand for low phase noise in recent high-performance communication systems, the issue of the trade-off between occupied area and noise in conventional CPs has become significant. A noise-canceling CP circuit is presented in this paper to mitigate the trade-off between occupied area and noise. The proposed CP can achieve lower noise performance than conventional CPs by performing additional noise cancelation. According to the simulation results, the proposed CP can reduce the current noise to 57% with the same occupied area, or can reduce the occupied area to 22% compared with that of the conventional CPs at the same noise performance. We fabricated a prototype of the proposed CP embedded in a 28-GHz LC-PLL using a 16-nm FinFET process, and 1.2-dB improvement in single sideband integrated phase noise is achieved.

  • Effects of Oscillator Phase Noise on Frequency Delta Sigma Modulators with a High Oversampling Ratio for Sensor Applications

    Koichi MAEZAWA  Masayuki MORI  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    463-466

    Frequency delta sigma modulation (FDSM) is a unique analog to digital conversion technique featuring large dynamic range with wide frequency band width. It can be used for high performance digital-output sensors, if the oscillator in the FDSM is replaced by a variable frequency oscillator whose frequency depends on a certain external physical quantity. One of the most important parameters governing the performance of these sensors is a phase noise of the oscillator. The phase noise is an essential error source in the FDSM, and it is quite important for this type of sensors because they use a high frequency oscillator and an extremely large oversampling ratio. In this paper, we will discuss the quantitative effects of the phase noise on the FDSM output on the basis of a simple model. The model was validated with experiments for three types of oscillators.

  • Real-Time Full-Band Voice Conversion with Sub-Band Modeling and Data-Driven Phase Estimation of Spectral Differentials Open Access

    Takaaki SAEKI  Yuki SAITO  Shinnosuke TAKAMICHI  Hiroshi SARUWATARI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2021/04/16
      Vol:
    E104-D No:7
      Page(s):
    1002-1016

    This paper proposes two high-fidelity and computationally efficient neural voice conversion (VC) methods based on a direct waveform modification using spectral differentials. The conventional spectral-differential VC method with a minimum-phase filter achieves high-quality conversion for narrow-band (16 kHz-sampled) VC but requires heavy computational cost in filtering. This is because the minimum phase obtained using a fixed lifter of the Hilbert transform often results in a long-tap filter. Furthermore, when we extend the method to full-band (48 kHz-sampled) VC, the computational cost is heavy due to increased sampling points, and the converted-speech quality degrades due to large fluctuations in the high-frequency band. To construct a short-tap filter, we propose a lifter-training method for data-driven phase reconstruction that trains a lifter of the Hilbert transform by taking into account filter truncation. We also propose a frequency-band-wise modeling method based on sub-band multi-rate signal processing (sub-band modeling method) for full-band VC. It enhances the computational efficiency by reducing sampling points of signals converted with filtering and improves converted-speech quality by modeling only the low-frequency band. We conducted several objective and subjective evaluations to investigate the effectiveness of the proposed methods through implementation of the real-time, online, full-band VC system we developed, which is based on the proposed methods. The results indicate that 1) the proposed lifter-training method for narrow-band VC can shorten the tap length to 1/16 without degrading the converted-speech quality, and 2) the proposed sub-band modeling method for full-band VC can improve the converted-speech quality while reducing the computational cost, and 3) our real-time, online, full-band VC system can convert 48 kHz-sampled speech in real time attaining the converted speech with a 3.6 out of 5.0 mean opinion score of naturalness.

  • Sensor Gain-Phase Error and Position Perturbation Estimation Using an Auxiliary Source in an Unknown Direction

    Zheng DAI  Weimin SU  Hong GU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/12/03
      Vol:
    E104-B No:6
      Page(s):
    639-646

    In this paper, we propose an active calibration algorithm to tackle both gain-phase errors and position perturbations. Unlike many other active calibration methods, which fix the array while changing the location of the source, our approach rotates the array but does not change the location of the source, and knowledge of the direction-of-arrival (DOA) of the far-field calibration source is not required. The superiority of the proposed method lies in the fact that measurement of the direction of a far-field calibration source is not easy to carry out, while measurement of the rotation angle via the proposed calibration strategy is convenient and accurate. To obtain the receiving data from different directions, the sensor array is rotated to three different positions with known rotation angles. Based on the eigen-decomposition of the data covariance matrices, we can use the direction of the auxiliary source to represent the gain-phase errors and position perturbations. After that, we estimate the DOA of the calibration source by a one-dimensional search. Finally, the sensor gain-phase errors and position perturbations are calculated by using the estimated direction of the calibration source. Simulations verify the effectiveness and performance of the algorithm.

  • Angle Adjustment for Sampling Frequency Offset Estimation of OFDM-Based WLANs

    Xiaoping ZHOU  Bin WU  Kan ZHENG  Hui ZHAO  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/11/12
      Vol:
    E104-A No:5
      Page(s):
    834-837

    In this letter, an angle adjustment method is proposed to improve the accuracy of the sampling frequency offset (SFO) estimation for the very high throughput wireless local area networks (WLANs). This angle adjustment can work together with existing least square (LS) and weighted least square (WLS) to achieve better system performance. Simulation results show that, the angle adjustment can help LS and WLS to get better pocket error rate (PER).

  • Phase Stabilization by Open Stubs for Via-Less Waveguide to Microstrip Line Transition

    Takashi MARUYAMA  Shigeo UDAGAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/11/05
      Vol:
    E104-B No:5
      Page(s):
    530-538

    We have proposed a waveguide to microstrip line transition, which perpendicularly connects one waveguide into two microstrip lines. It consists of only a waveguide and a dielectric substrate with copper foils. A backshort waveguide for typical transitions is not needed. Additionally, the transition does not require via holes on the substrate. These innovations simplify the structure and the manufacturing process. We assume that our transition and antennas are co-located on the substrate. We reduced the undesirable radiation from the transition so as not to contaminate the desirable radiation pattern. In this paper, we address output phase of our transition. Since the transition has two MSL output ports connecting to different radiation elements, the phase error between two dividing signals leads to beam shift in the radiation pattern. Unfortunately, misalignment of etching pattern between copper layers of the substrate is unavoidable. The structural asymmetry causes the phase error. In order to tolerate the misalignment, we propose to add a pair of open stubs to the transition. We show that the structure drastically stabilizes the output phase. Though the stubs create some extra radiation, we confirm that the impact is not significant. Moreover, we fabricate and measure a prototype antenna that uses the transition. In the case of with stubs, the radiation pattern is unchanged even if the misalignment is severe.

  • Statistical Analysis of Phase-Only Correlation Functions under the Phase Fluctuation of Signals due to Additive Gaussian Noise

    Shunsuke YAMAKI  Kazuhiro FUKUI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2020/09/29
      Vol:
    E104-A No:4
      Page(s):
    671-679

    This paper proposes statistical analysis of phase-only correlation (POC) functions under the phase fluctuation of signals due to additive Gaussian noise. We derive probability density function of phase-spectrum differences between original signal and its noise-corrupted signal with additive Gaussian noise. Furthermore, we evaluate the expectation and variance of the POC functions between these two signals. As the variance of Gaussian noise increases, the expectation of the peak of the POC function monotonically decreases and variance of the POC function monotonically increases. These results mathematically guarantee the validity of the POC functions used for similarity measure in matching techniques.

  • Analysis of BER Degradation Owing to Multiple Crosstalk Channels in Optical QPSK/QAM Signals

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2020/09/28
      Vol:
    E104-B No:4
      Page(s):
    370-377

    Inter-channel crosstalk is one of the limiting factors in multichannel optical systems. This paper presents a theoretical analysis of the bit-error-rate (BER) performance of quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals influenced by multiple crosstalk channels. The field distribution of multiple crosstalk channels in the constellation map is calculated. The BER of the QPSK/QAM signal, onto which the crosstalk light is superimposed, is then evaluated for a varying number of crosstalk channels under the condition that the total crosstalk power is constant. The results quantitatively confirm that as the channel number increases, the BER degradation caused by crosstalk light approaches that caused by Gaussian noise light. It is also confirmed that the degradations caused by crosstalk light and Gaussian light are similar for QAM signals of high-level modulation.

  • A Suspended Stripline Fed Dual-Polarized Open-Ended Waveguide Subarray with Metal Posts for Phased Array Antennas

    Narihiro NAKAMOTO  Toru TAKAHASHI  Toru FUKASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/09/09
      Vol:
    E104-B No:3
      Page(s):
    295-303

    This paper proposes a dual linear-polarized open-ended waveguide subarray designed for use in phased array antennas. The proposed subarray is a one-dimensional linear array that consists of open-ended waveguide antenna elements and suspended stripline feed networks to realize vertical and horizontal polarizations. The antenna includes a novel suspended stripline-to-waveguide transition that combines double- and quad-ridge waveguides to minimize the size of the transition and enhance the port isolation. Metal posts are installed on the waveguide apertures to eliminate scan-blindness. Prototype subarrays are fabricated and tested in an array of 16 subarrays. The experimental tests and numerical simulations indicate that the prototype subarray offers a low reflection coefficient of less than -11.4dB, low cross-polarization of less than -26dB, and antenna efficiency above 69% in the frequency bandwidth of 14%.

  • A PAPR Reduction Technique for OFDM Systems Using Phase-Changed Peak Windowing Method

    Xiaoran CHEN  Xin QIU  Xurong CHAI  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/09/04
      Vol:
    E104-A No:3
      Page(s):
    627-631

    Orthogonal frequency division multiplexing (OFDM) technique has been widely used in communication systems in pursuit of the most efficient utilization of spectrum. However, the increase of the number of orthogonal subcarriers will lead to the rise of the peak-to-average power ratio (PAPR) of the waveform, thus reducing the efficiency of the power amplifiers. In this letter we propose a phase-changed PAPR reduction technique based on windowing function architecture for OFDM systems. This technique is based on the idea of phase change, which makes the spectrum of output signal almost free of regrowth caused by peak clipping. It can reduce more than 28dBc adjacent channel power ratio (ACPR) compared with the traditional peak windowing clipping methods in situation that peak is maximally suppressed. This technique also has low algorithm complexity so it can be easily laid out on hardware. The proposed algorithm has been laid out on a low-cost field-programmable gate array (FPGA) to verify its effectiveness and feasibility. A 64-QAM modulated 20M LTE-A waveform is used for measurement, which has a sampling rate of 245.67M.

  • Real-Time Distant Sound Source Suppression Using Spectral Phase Difference

    Kazuhiro MURAKAMI  Arata KAWAMURA  Yoh-ichi FUJISAKA  Nobuhiko HIRUMA  Youji IIGUNI  

     
    PAPER-Engineering Acoustics

      Pubricized:
    2020/09/24
      Vol:
    E104-A No:3
      Page(s):
    604-612

    In this paper, we propose a real-time BSS (Blind Source Separation) system with two microphones that extracts only desired sound sources. Under the assumption that the desired sound sources are close to the microphones, the proposed BSS system suppresses distant sound sources as undesired sound sources. We previously developed a BSS system that can estimate the distance from a microphone to a sound source and suppress distant sound sources, but it was not a real-time processing system. The proposed BSS system is a real-time version of our previous BSS system. To develop the proposed BSS system, we simplify some BSS procedures of the previous system. Simulation results showed that the proposed system can effectively suppress the distant source signals in real-time and has almost the same capability as the previous system.

  • 180-Degree Branch Line Coupler Composed of Two Types of Iris-Loaded Waveguides

    Hidenori YUKAWA  Yu USHIJIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    85-92

    We propose a 180-degree branch line coupler composed of two types of iris-loaded waveguides. The proposed coupler consists of two main transmission lines and branch lines with different electrical lengths. Based on optimal electrical lengths, a 180-degree output phase difference can be achieved without additional phase shifters. The two main lines with different electrical lengths are realized by capacitive and inductive iris-loaded waveguides. The size of the proposed coupler is nearly half that of the conventional 180-degree branch line coupler with additional phase shifters. Thus, the proposed coupler is of advantage with respect to the conventional one. We designed a proposed coupler in the K-band for satellite communication systems. The measurement results demonstrate a reflection of -20 dB, isolation of -20 dB, coupling response of -3.1+0.1 dB/-0.1 dB, and phase differences of 0+0.1 deg/-1.4 deg and -180+0.5 deg/-2.3 deg at a bandwidth of 8% in the K-band.

  • Dynamic Capacitance Changes by Flow Effect of Nematic-phase Liquid Crystals with Compressive Force

    Yosei SHIBATA  Nobuki FUKUNAGA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER-Organic Molecular Electronics

      Pubricized:
    2020/08/21
      Vol:
    E104-C No:2
      Page(s):
    81-84

    For exploration of the functional use of dielectric anisotropy of liquid crystals (LCs), we investigated the dynamic response of molecular alignment in a nematic-phase LC cell with compressive force-induced flow behavior. The results showed that the initial alignment and thickness of the LC layer affect the capacitance of the cell when mechanical pressure is applied.

  • A Phase Retrieval Method with Probe-Positioning Error Compensation for Phaseless Near-Field Measurements

    Yoshiki SUGIMOTO  Hiroyuki ARAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    55-63

    The phaseless antenna measurement technique is advantageous for high-frequency near-field measurements in which the uncertainty of the measured phase is a problem. In the phaseless measurement, which is expected to be used in the frequency band with a short wavelength, a slight positional deviation error of the probe greatly deteriorates the measurement result. This paper proposes a phase retrieval method that can compensate the measurement errors caused by misalignment of a probe and its jig. And this paper proposes a far-field estimation method by phase resurrection that incorporated the compensation techniques. We find that the positioning errors are due to the random errors occurring at each measurement point because of minute vibrations of the probe; in addition, we determine that the stationary depth errors occurring at each measurement surface as errors caused by improper setting of the probe jig. The random positioning error is eliminated by adding a low-pass filter in wavenumber space, and the depth positioning error is iteratively compensated on the basis of the relative residual obtained in each plane. The validity of the proposed method is demonstrated by estimating the far-field patterns using the results from numerical simulations, and is also demonstrated using measurement data with probe-positioning error. The proposed method can reduce the probe-positioning error and improve the far-field estimation accuracy by more over than 10 dB.

  • Transparent Glass Quartz Antennas on the Windows of 5G-Millimeter-Wave-Connected Cars

    Osamu KAGAYA  Yasuo MORIMOTO  Takeshi MOTEGI  Minoru INOMATA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    64-72

    This paper proposes a transparent glass quartz antenna for 5G-millimeter-wave-connected vehicles and clarifies the characteristics of signal reception when the glass antennas are placed on the windows of a vehicle traveling in an urban environment. Synthetic fused quartz is a material particularly suited for millimeter-wave devices owing to its excellent low transmission loss. Realizing synthetic fused quartz devices requires accurate micromachining technology specialized for the material coupled with the material technology. This paper presents a transparent antenna comprising a thin mesh pattern on a quartz substrate for installation on a vehicle window. A comparison of distributed transparent antennas and an omnidirectional antenna shows that the relative received power of the distributed antenna system is higher than that of the omnidirectional antenna. In addition, results show that the power received is similar when using vertically and horizontally polarized antennas. The design is verified in a field test using transparent antennas on the windows of a real vehicle.

  • Robust Adaptive Beamforming Based on the Effective Steering Vector Estimation and Covariance Matrix Reconstruction against Sensor Gain-Phase Errors

    Di YAO  Xin ZHANG  Bin HU  Xiaochuan WU  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/06/04
      Vol:
    E103-A No:12
      Page(s):
    1655-1658

    A robust adaptive beamforming algorithm is proposed based on the precise interference-plus-noise covariance matrix reconstruction and steering vector estimation of the desired signal, even existing large gain-phase errors. Firstly, the model of array mismatches is proposed with the first-order Taylor series expansion. Then, an iterative method is designed to jointly estimate calibration coefficients and steering vectors of the desired signal and interferences. Next, the powers of interferences and noise are estimated by solving a quadratic optimization question with the derived closed-form solution. At last, the actual interference-plus-noise covariance matrix can be reconstructed as a weighted sum of the steering vectors and the corresponding powers. Simulation results demonstrate the effectiveness and advancement of the proposed method.

  • Inpainting via Sparse Representation Based on a Phaseless Quality Metric

    Takahiro OGAWA  Keisuke MAEDA  Miki HASEYAMA  

     
    PAPER-Image

      Vol:
    E103-A No:12
      Page(s):
    1541-1551

    An inpainting method via sparse representation based on a new phaseless quality metric is presented in this paper. Since power spectra, phaseless features, of local regions within images enable more successful representation of their texture characteristics compared to their pixel values, a new quality metric based on these phaseless features is newly derived for image representation. Specifically, the proposed method enables spare representation of target signals, i.e., target patches, including missing intensities by monitoring errors converged by phase retrieval as the novel phaseless quality metric. This is the main contribution of our study. In this approach, the phase retrieval algorithm used in our method has the following two important roles: (1) derivation of the new quality metric that can be derived even for images including missing intensities and (2) conversion of phaseless features, i.e., power spectra, to pixel values, i.e., intensities. Therefore, the above novel approach solves the existing problem of not being able to use better features or better quality metrics for inpainting. Results of experiments showed that the proposed method using sparse representation based on the new phaseless quality metric outperforms previously reported methods that directly use pixel values for inpainting.

  • PPLN-Based Low-Noise Phase Sensitive Amplification Using an Optical Phase-Locked Pump Open Access

    Takushi KAZAMA  Takeshi UMEKI  Yasuhiro OKAMURA  Koji ENBUTSU  Osamu TADANAGA  Atsushi TAKADA  Ryoichi KASAHARA  

     
    PAPER

      Pubricized:
    2020/05/22
      Vol:
    E103-B No:11
      Page(s):
    1265-1271

    We evaluated the noise properties of a periodically poled lithium niobite phase-sensitive amplifier (PSA) using a phase-locked local oscillator as a pump generated by an optical phase-locked loop (OPLL-LO). To examine whether or not the LO pump generated by an OPLL degrades the noise figure (NF) of the PSA, we compared the noise levels of a PSA using an OPLL-LO with that of one using a master local oscillator (M-LO) that utilizes the master light itself as a pump in the electrical domain. With the OPLL, the phase-locked local light had almost the same frequency noise components as the master light. We observed almost the same output noise spectra for the OPLL-LO PSA and M-LO PSA and confirmed the absence of excess noise components in the OPLL-LO PSA in the 0.1 to 20-GHz range. The OPLL-LO PSA exhibited low-noise amplification with an average NF of 1.7-dB at a 23.2-dB gain within an input power range of -31 to -21dBm, which is a feasible input power for repeater amplifiers used in the optical signal transmission systems. We also investigated the influence of the noisy master light, which emulates the accumulation of optical noise from the amplifiers in the transmission system. The OPLL-LO PSA was highly tolerant to the optical noise because the difference in the NF was negligibly small within a master light OSNR range of 5 to 55dB. These results indicate that the OPLL-LO PSA will be useful as a low-noise repeater amplifier for the spectrally efficient large-capacity photonic networks of the future.

41-60hit(869hit)