The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sign(2667hit)

1361-1380hit(2667hit)

  • A Detection Method for an OFDM Signal Distorted by IQ Imbalance

    Kyung Won PARK  Yong Soo CHO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:3
      Page(s):
    1016-1019

    In this letter, we propose a new detection method for an OFDM signal distorted by IQ imbalance, and a pilot pattern to estimate the channel associated with IQ imbalance. It is shown by computer simulation that the proposed method can achieve robust detection even when severe IQ imbalance exists in OFDM systems with an input of higher-order constellation.

  • Variability: Modeling and Its Impact on Design

    Hidetoshi ONODERA  

     
    INVITED PAPER

      Vol:
    E89-C No:3
      Page(s):
    342-348

    As the technology scaling approaching nano-scale region, variability in device performance becomes a major issue in the design of integrated circuits. Besides the growing amount of variability, the statistical nature of the variability is changing as the progress of technology generation. In the past, die-to-die variability, which is well managed by the worst case design technique, dominates over within-die variability. In present and the future, the amount of within-die variability is increasing and it casts a challenge in design methodology. This paper first shows measured results of variability in three different processes of 0.35, 0.18, and 0.13 µm technologies, and explains the above mentioned trend of variability. An example of modeling for the within-die variability is explained. The impact of within-die random variability on circuit performance is demonstrated using a simple numerical example. It shows that a circuit that is designed optimally under the assumption of deterministic delay is now most susceptible to random fluctuation in delay, which clearly indicates the requirement of statistical design methodology.

  • A Novel Mobile Assignment Method for WCDMA Base Station Location Planning

    Li YAO  Chen HE  Junlong LIN  

     
    LETTER-Network Management/Operation

      Vol:
    E89-B No:3
      Page(s):
    978-981

    A novel mobile assignment method based on transmit power and cell load is proposed for WCDMA base station location planning. Experimental results show that, compared with the currently widely used mobile assignment method based on link attenuation, the proposed mobile assignment method is more reasonable and unnecessary base stations are reduced in the planning results.

  • Quarternary Signal Sets for Digital Communications with Nonuniform Sources

    Ha H. NGUYEN  Tyler NECHIPORENKO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E89-A No:3
      Page(s):
    832-835

    This letter considers the signal design problems for quaternary digital communications with nonuniform sources. The designs are considered for both the average and equal energy constraints and for a two-dimensional signal space. A tight upper bound on the bit error probability (BEP) is employed as the design criterion. The optimal quarternary signal sets are presented and their BEP performance is compared with that of the standard QPSK and the binary signal set previously designed for nonuniform sources. Results shows that a considerable saving in the transmitted power can be achieved by the proposed average-energy signal set for a highly nonuniform source.

  • A Plan-Generation-Evaluation Framework for Design Space Exploration of Digital Systems Design

    Jun Kyoung KIM  Tag Gon KIM  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E89-A No:3
      Page(s):
    772-781

    Modern digital systems design requires us to explore a large and complex design space to find a best configuration which satisfies design requirements. Such exploration requires a sound representation of design space from which design candidates are efficiently generated, each of which then is evaluated. This paper proposes a plan-generation-evaluation framework which supports a complete process of such design space exploration. The plan phase constitutes a design space of all possible design alternatives by means of a formally defined representation scheme of attributed AND-OR graph. The generation phase generates a set of candidates by algorithmic pruning of the design space in an attributed AND-OR graph with respect to design requirements as well as architectural constraints. Finally, the evaluation phase measures performance of design candidates in a pruned graph to select a best one. A complete process of cache design is exemplified to show the effectiveness of the proposed framework.

  • Cryptanalysis of Tzeng-Tzeng Forward-Secure Signature Schemes

    Hong WANG  Gang QIU  Deng-Guo FENG  Guo-Zhen XIAO  

     
    LETTER-Information Security

      Vol:
    E89-A No:3
      Page(s):
    822-825

    In PKC'01, Tzeng et al. proposed two robust forward-secure signature schemes with proactive security: one is an efficient scheme, but it requires a manager; the other scheme is a new construction based on distributed multiplication procedures. In this paper, we point out their new distributed multiplication procedure is not secure, thus making the whole new construction insecure. Finally, we present an improved forward-secure signature scheme without a manager.

  • A Fast Elliptic Curve Cryptosystem LSI Embedding Word-Based Montgomery Multiplier

    Jumpei UCHIDA  Nozomu TOGAWA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-System LSIs and Microprocessors

      Vol:
    E89-C No:3
      Page(s):
    243-249

    Elliptic curve cryptosystems are expected to be a next standard of public-key cryptosystems. A security level of elliptic curve cryptosystems depends on a difficulty of a discrete logarithm problem on elliptic curves. The security level of a elliptic curve cryptosystem which has a public-key of 160-bit is equivalent to that of a RSA system which has a public-key of 1024-bit. We propose an elliptic curve cryptosystem LSI architecture embedding word-based Montgomery multipliers. A Montgomery multiplication is an efficient method for a finite field multiplication. We can design a scalable architecture for an elliptic curve cryptosystem by selecting structure of word-based Montgomery multipliers. Experimental results demonstrate effectiveness and efficiency of the proposed architecture. In the hardware evaluation using 0.18 µm CMOS library, the high-speed design using 126 Kgates with 208-bit multipliers achieved operation times of 3.6 ms for a 160-bit point multiplication.

  • High Speed 3D IR Scanner for Home Service Robots

    Jehyuk RYU  Sungho YUN  Kyungjin SONG  Jundong CHO  Jongmoo CHOI  Sukhan LEE  

     
    PAPER-Image/Vision Processing

      Vol:
    E89-A No:3
      Page(s):
    678-685

    This paper introduces the hardware platform of the structured light processing based on depth imaging to perform a 3D modeling of cluttered workspace for home service robots. We have discovered that the degradation of precision and robustness comes mainly from the overlapping of multiple codes in the signal received at a camera pixel. Considering the criticality of separating the overlapped codes to precision and robustness, we proposed a novel signal separation code, referred to here as "Hierarchically Orthogonal Code (HOC)," for depth imaging. The proposed HOC algorithm was implemented by using hardware platform which applies the Xilinx XC2V6000 FPGA to perform a real time 3D modeling and the invisible IR (Infrared) pattern lights to eliminate any inconveniences for the home environment. The experimental results have shown that the proposed HOC algorithm significantly enhances the robustness and precision in depth imaging, compared to the best known conventional approaches. Furthermore, after we processed the HOC algorithm implemented on our hardware platform, the results showed that it required 34 ms of time to generate one 3D image. This processing time is about 24 times faster than the same implementation of HOC algorithm using software, and the real-time processing is realized.

  • Low-Power Hybrid Turbo Decoding Based on Reverse Calculation

    Hye-Mi CHOI  Ji-Hoon KIM  In-Cheol PARK  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E89-A No:3
      Page(s):
    782-789

    As turbo decoding is a highly memory-intensive algorithm consuming large power, a major issue to be solved in practical implementation is to reduce power consumption. This paper presents an efficient reverse calculation method to lower the power consumption by reducing the number of memory accesses required in turbo decoding. The reverse calculation method is proposed for the Max-log-MAP algorithm, and it is combined with a scaling technique to achieve a new decoding algorithm, called hybrid log-MAP, that results in a similar BER performance to the log-MAP algorithm. For the W-CDMA standard, experimental results show that 80% of memory accesses are reduced through the proposed reverse calculation method. A hybrid log-MAP turbo decoder based on the proposed reverse calculation reduces power consumption and memory size by 34.4% and 39.2%, respectively.

  • Wideband Signal DOA Estimation Based on Modified Quantum Genetic Algorithm

    Feng LIU  Shaoqian LI  Min LIANG  Laizhao HU  

     
    PAPER-Communications

      Vol:
    E89-A No:3
      Page(s):
    648-653

    A new wideband signal DOA estimation algorithm based on modified quantum genetic algorithm (MQGA) is proposed in the presence of the errors and the mutual coupling between array elements. In the algorithm, the narrowband signal subspace fitting method is generalized to wideband signal DOA finding according to the character of space spectrum of wideband signal, and so the rule function is constructed. Then, the solutions is encoded onto chromosomes as a string of binary sequence, the variable quantum rotation angle is defined according to the distribution of optimization solutions. Finally, we use the MQGA algorithm to solve the nonlinear global azimuths optimization problem, and get optimization azimuths by fitness values. The computer simulation results illustrated that the new algorithm have good estimation performance.

  • Ant-Based Alternate Routing in All-Optical WDM Networks

    Son-Hong NGO  Xiaohong JIANG  Susumu HORIGUCHI  

     
    PAPER-Network

      Vol:
    E89-B No:3
      Page(s):
    748-755

    We propose an ant-based algorithm to improve the alternate routing scheme for dynamic Routing and Wavelength Assignment (RWA) in all-optical wavelength-division- multiplexing (WDM) networks. In our algorithm, we adopt a novel twin routing table structure that comprises both a P-route table for connection setup and a pheromone table for ants' foraging. The P-route table contains P alternate routes between a source-destination pair, which are dynamically updated by ant-based mobile agents based on current network congestion information. Extensive simulation results upon the ns-2 network simulator indicate that by keeping a suitable number of ants in a network to proactively and continually update the twin routing tables in the network, our new ant-based alternate routing algorithm can result in a small setup time and achieve a significantly lower blocking probability than the promising alternate shortest-path (ASP) algorithm and the fixed-paths least congestion (FPLC) algorithm for dynamic RWA even with a small value of P.

  • A Novel Circle Construction for SONET/WDM Wavelength Assignment

    Wei LI  T. Aaron GULLIVER  Wei ZOU  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E89-B No:3
      Page(s):
    966-969

    With the application of optical add-drop multiplexers, wavelength assignment has become an important issue in SONET/WDM design. Among wavelength assignment methods, circle construction is of great importance. In this paper, we propose a novel matrix based circle construction algorithm for all-to-all uniform traffic in a bidirectional SONET/WDM ring.

  • On Reducing IP Mobility Cost in Mobile Networks

    Taehyoun KIM  Jaiyong LEE  

     
    PAPER-Network

      Vol:
    E89-B No:3
      Page(s):
    731-738

    Hierarchical Mobile IPv6 (HMIPv6) was proposed by the Internet Engineering Task Force (IETF) for efficient mobility management. HMIPv6 reduces the amount of signaling in the wired network link that exists in Mobile IPv6. But, HMIPv6 cannot reduce the signaling cost in the wireless link. In mobile networks, the wireless link has far less available bandwidth resources and limited scalability compared with the wired network link. Therefore, the signaling overhead associated with mobility management severely degrades the wireless link. In this paper, we propose virtual-IP (VIP) allocation scheme with dynamic VIP zone to reduce the wireless signaling cost in mobile networks. The performance of the proposed scheme is compared with HMIPv6. Based on the numerical analysis and simulation, we show that VIP allocation scheme reduces the wireless signaling cost under various system conditions.

  • A Pruning Algorithm for Training Cooperative Neural Network Ensembles

    Md. SHAHJAHAN  Kazuyuki MURASE  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E89-D No:3
      Page(s):
    1257-1269

    We present a training algorithm to create a neural network (NN) ensemble that performs classification tasks. It employs a competitive decay of hidden nodes in the component NNs as well as a selective deletion of NNs in ensemble, thus named a pruning algorithm for NN ensembles (PNNE). A node cooperation function of hidden nodes in each NN is introduced in order to support the decaying process. The training is based on the negative correlation learning that ensures diversity among the component NNs in ensemble. The less important networks are deleted by a criterion that indicates over-fitting. The PNNE has been tested extensively on a number of standard benchmark problems in machine learning, including the Australian credit card assessment, breast cancer, circle-in-the-square, diabetes, glass identification, ionosphere, iris identification, and soybean identification problems. The results show that classification performances of NN ensemble produced by the PNNE are better than or competitive to those by the conventional constructive and fixed architecture algorithms. Furthermore, in comparison to the constructive algorithm, NN ensemble produced by the PNNE consists of a smaller number of component NNs, and they are more diverse owing to the uniform training for all component NNs.

  • Converter-Aware Wavelength Assignment in WDM Networks with Limited-Range Conversion Capability

    Quang-Dzung HO  Man-Seop LEE  

     
    PAPER-Switching for Communications

      Vol:
    E89-B No:2
      Page(s):
    436-445

    In wavelength-routed optical networks, wavelength converters are considered as one of the most critical network resources because they can significantly reduce the blocking probability, but still remain quite expensive. Unfortunately, previous wavelength assignment algorithms have seldom considered their presence. Therefore, in this paper, we propose a novel dynamic algorithm that can minimize the number of wavelength translations. Our algorithm establishes lightpaths by connecting a minimum number of wavelength-continuous segments. We mathematically prove the correctness of our algorithm. Then, we carry out extensive performance evaluations over three typical topologies with full-range or limited-range converters to compare our proposed algorithm with first-fit and most-used algorithms. The simulations show that, to obtain similar blocking performance, our algorithm requires much fewer converters, or the same number of converters but with smaller conversion ranges. From another perspective, with the same conversion capacity, our algorithm can significantly improve the blocking performance. Our algorithm is also scalable due to its polynomial time complexity and insignificant local signaling overhead.

  • Design Considerations for RC Polyphase Filters with Simultaneously Equal Ripple Both in Stopband and Passband

    Hiroaki TANABE  Hiroshi TANIMOTO  

     
    LETTER

      Vol:
    E89-A No:2
      Page(s):
    461-464

    This paper describes a numerical design procedure of element values of RC polyphase filters with equal minima in stopband and equal ripple in passband. Determination of element values of RC polyphase filters with equal-ripple characteristic have not been solved to the best knowledge of the authors. There found a paper tackling with the problem; however, it can only give sub-optimal solutions via numerical calculation [3]. We propose a numerical element value design procedure for RC polyphase filters with equi-ripple gain in both stopband and passband by using the coefficient matching method. Some design examples are given.

  • A Coarse-Grain Hierarchical Technique for 2-Dimensional FFT on Configurable Parallel Computers

    Xizhen XU  Sotirios G. ZIAVRAS  

     
    PAPER-Parallel/Distributed Algorithms

      Vol:
    E89-D No:2
      Page(s):
    639-646

    FPGAs (Field-Programmable Gate Arrays) have been widely used as coprocessors to boost the performance of data-intensive applications [1],[2]. However, there are several challenges to further boost FPGA performance: the communication overhead between the host workstation and the FPGAs can be substantial; large-scale applications cannot fit in a single FPGA because of its limited capacity; mapping an application algorithm to FPGAs still remains a daunting job in configurable system design. To circumvent these problems, we propose in this paper the FPGA-based Hierarchical-SIMD (H-SIMD) machine with its codesign of the Pyramidal Instruction Set Architecture (PISA). PISA comprises high-level instructions implemented as FPGA functions of coarse-grain SIMD (Single-Instruction, Multiple-Data) tasks to facilitate ease of program development, code portability across different H-SIMD implementations and high performance. We assume a multi-FPGA board where each FPGA is configured as a separate SIMD machine. Multiple FPGA chips can work in unison at a higher SIMD level, if needed, controlled by the host. Additionally, by using a memory switching scheme and the high-level PISA to partition applications into coarse-grain tasks, host-FPGA communication overheads can be hidden. We enlist the two-dimensional Fast Fourier Transform (2D FFT) to test the effectiveness of H-SIMD. The test results show sustained high performance for this problem. The H-SIMD machine even outperforms a Xeon processor for this problem.

  • Signaling Overhead Analysis of Distributed Control for Partition-Based Protection in WDM Mesh Networks

    Chen-Shie HO  Sy-Yen KUO  

     
    PAPER-Network Protocols, Topology and Fault Tolerance

      Vol:
    E89-D No:2
      Page(s):
    728-737

    While the survivability becomes more and more important in WDM backbone network design, the signaling strategy corresponding to a protection/restoration scenario upon failures will have significant influence on the performance and then determine the integrity of the total solution. In this paper we will discuss the control mechanisms for several representative protection schemes, analyze their adaptation and application, and propose the corresponding signaling model and control protocol for a novel dynamic group protection strategy. The simulation results show that the control overhead of our proposed method outperforms the segmented protection and has the benefit on resource utilization and failure restoration speed.

  • Tentative Accommodating and Congestion Confirming Strategy--A Novel Admission Control Strategy for Packet Switching Networks--

    Kenta YASUKAWA  Ken-ichi BABA  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E89-B No:2
      Page(s):
    373-382

    Admission control is becoming an essential technique for IP networks to provide full-fledged multimedia streaming services. Although signaling-based schemes are utilized to achieve this, these are difficult to deploy and can hardly achieve strict admission control taking the properties of packet arrival into consideration. In this paper, we propose a novel admission control strategy called the Tentative Accommodating and Congestion Confirming Strategy (TACCS). The main idea is to accommodate incoming flows tentatively and confirm congestion after a certain period. Since tentative accommodating enables us to generate the same situation as where incoming flows have been accommodated, TACCS makes it possible to control admission considering the properties of packet arrival after they have been accommodated, without collecting resource information in advance. From the results of mathematical analysis, we confirmed that TACCS enabled a domain to control admission without a centralized management agent and we provided guidelines for configuring parameters of TACCS.

  • Schemes for Encryption with Anonymity and Ring Signature

    Ryotaro HAYASHI  Keisuke TANAKA  

     
    PAPER-Public Key Cryptography

      Vol:
    E89-A No:1
      Page(s):
    66-73

    In this paper, we present previously unproposed schemes for encryption with anonymity and ring signature by applying two techniques. That is, we construct a key-privacy encryption scheme by using N-ary representation, and a ring signature scheme by using the repetition of evaluation of functions. We analyze precisely the properties of these schemes and show their advantage and disadvantage.

1361-1380hit(2667hit)