The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sign(2667hit)

1241-1260hit(2667hit)

  • A Practical Method for Generating Digital Signatures Using Biometrics

    Taekyoung KWON  Hyung-Woo LEE  Jae-il LEE  

     
    PAPER-Network

      Vol:
    E90-B No:6
      Page(s):
    1381-1389

    When we consider user's convenience for electronic transactions, it might be desirable to generate a digital signature using biometrics. However, it is not easy nor practicable in today's communications environment because of inaccurate measuring and potential hill-climbing attacks with regard to biometrics, unless specific hardware storage is provided for manipulating signature keys or biometric templates securely. In this paper, we study a simple practical method for biometrics based digital signature generation without such restriction. It is based on the existing tools in software in our proposed model where a general digital signature such as RSA can be applied without losing its security. This is not a cryptography paper but rather written from the practical perspectives.

  • Time Domain Crosstalk Characteristics between Single-Ended and Differential Lines

    Fengchao XIAO  Ryota HASHIMOTO  Kimitoshi MURANO  Yoshio KAMI  

     
    PAPER-Printed Circuit Board

      Vol:
    E90-B No:6
      Page(s):
    1305-1312

    The crosstalks between a single-ended line and a differential pair in parallel are analyzed using telegrapher's equations for multi-conductor lines. The crosstalk from the single-ended trace to the differential pair is estimated at shunt-arm resistors in T or Π termination networks. The analysis is conducted by incorporating the termination conditions with the solution of the telegrapher's equations. The time-domain characteristics of the crosstalk are obtained by using the fast inverse Laplace transform. The measurements are conducted easily by using a single-ended digital oscilloscope since the crosstalk is evaluated on the shunt-arm resistors. Both the calculated and measured results are presented, and the characteristics of the crosstalk are also investigated qualitatively.

  • Signature Sequence Optimization for MC-CDMA: A Geometric Approach

    Hoang-Yang LU  Wen-Hsien FANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:6
      Page(s):
    1540-1542

    A simple, yet effective geometric method is presented to construct the signature sequences for multicarrier code-division multiple access (MC-CDMA) systems. By minimizing the correlation of the effective signature vectors, the signature sequences are recursively determined via projection onto a properly constructed subspace. Conducted simulations verify the effectiveness of the method.

  • IM3 Cancellation Method Using Current Feedback Suitable for a Multi-Stage RFIC Amplifier

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1209-1221

    A new method of cancellation of IM3 using current feedback has been proposed for a multi-stage RFIC amplifier. In order to cancel the IM3 present in an output signal of the amplifier, the IIP3 level and IM3 phase of the amplifier are adjusted by means of feedback circuit techniques, so that the target specification is satisfied. By estimating the IIP3 level and IM3 phase variations for two states in situations with and without feedback possessing linear factors, the parameters of a feedback circuit can be calculated. To confirm the validity of the method, we have investigated two approaches; one including an analytical approach to designing a two-stage feedback amplifier, achieving an IIP3 level improvement of 14.8 dB. The other method involves the fabrication of single-stage amplifiers with and without feedback, operating at 850 MHz, both of which were designed as an integrated circuit using a 0.18 µm SiGe BiCMOS process. The fabricated IC's were tested using a load-pull measurement system, and a good agreement between the estimated and measured IIP3 level and IM3 phase variations has been achieved. Further studies show that the error in these variations, as estimated by the method, has been found to be less than 1.5 dB and 15 degrees, respectively, when the load admittance at 1701 MHz was greater than 1/50 S.

  • Zero-Correlation Zone Sequence Set Constructed from a Perfect Sequence

    Takafumi HAYASHI  

     
    LETTER-Coding Theory

      Vol:
    E90-A No:5
      Page(s):
    1107-1111

    The present paper introduces the construction of a class of sequence sets with zero-correlation zones called zero-correlation zone sequence sets. The proposed zero-correlation zone sequence set can be generated from an arbitrary perfect sequence, the length of which is longer than 4. The proposed sets of ternary sequences, which can be constructed from an arbitrary perfect sequence, can successfully provide CDMA communication without co-channel interference. In an ultrasonic synthetic aperture imaging system, the proposed sequence set can improve the signal-to-noise ratio of the acquired image.

  • Provably Secure Untraceable Electronic Cash against Insider Attacks

    Yoshikazu HANATANI  Yuichi KOMANO  Kazuo OHTA  Noboru KUNIHIRO  

     
    PAPER

      Vol:
    E90-A No:5
      Page(s):
    980-991

    Although a great deal of research has been done on electronic cash schemes with blind multisignatures to prevent an insider attack, there is no discussion of a formal security model in the literature. Firstly we discussed the security model of e-cash schemes based on the blind multisignature scheme against a (restricted) attack model and proposed a concrete scheme proven to be secure in the model [1]; however, this attack model disallows an attacker from corrupting an issuing bank and shops in the forgery game. In this paper, first, we reconsider the security model to remove the restriction of the attack model. Second, we propose a new untraceable e-cash scheme with a blind multisignature scheme and prove that the proposed scheme is secure against the (non-restricted) attacks under the DDH assumption in the random oracle model.

  • Fair Exchange of Signatures with Multiple Signers

    Yuichi KOMANO  

     
    PAPER

      Vol:
    E90-A No:5
      Page(s):
    969-979

    Chen et al. introduced a new notion of a concurrent signature scheme for a fair exchange of signatures with two parties. Chen et al. also proposed a concrete scheme and proved its security under the assumption of discrete logarithm problem. Recently, Hiwatari and Tanaka extended the concept of concurrent signature to many-to-one setting. Hiwatari and Tanaka also proposed a concrete scheme; however, it requires some strong assumption to achieve the fair exchange and it is not efficient. This paper gives another construction of concurrent signature for many-to-one setting with multisignature scheme. Hereafter, we call it (n,1) concurrent signature scheme. The proposed scheme is more efficient than the scheme of Hiwatari and Tanaka in computation complexity and signature size, and achieves the fair exchange without the assumption required for the scheme of Hiwatari and Tanaka. This paper also gives a construction for the fair exchange of signatures in many-to-many setting, called (n,m) concurrent signature scheme, in appendix.

  • A Modification Strategy of Maximum Likelihood Method for Location Estimation Based on Received Signal Strength in Sensor Networks

    Jumpei TAKETSUGU  Jiro YAMAKITA  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E90-A No:5
      Page(s):
    1093-1104

    This paper investigates a scheme to improve a location estimation method for higher estimation accuracy in sensor networks. For the location estimation method, we focus on the maximum likelihood method based on the measurements of received signal strength and its known probability distribution. Using some statistical properties of the estimate obtained by the maximum likelihood method in a simplified situation, we propose a modification of likelihood function in order to improve the estimation accuracy for arbitrary situation. However, since the proposed scheme is derived under a special assumption for the simplification, we should examine the impact of the proposed scheme in more general situations by numerical simulation. From the simulation results, we show the effectiveness of the proposed modification especially in the cases of small number of samples (namely, the measurements of received signal strength) and the channel model with exponential distribution.

  • Required Number of Quantization Bits for CIE XYZ Signals Applied to Various Transforms in Digital Cinema Systems

    Junji SUZUKI  Isao FURUKAWA  

     
    PAPER-Image

      Vol:
    E90-A No:5
      Page(s):
    1072-1084

    To keep in step with the rapid progress of high quality imaging systems, the Digital Cinema Initiative (DCI) has been issuing digital cinema standards that cover all processes from production to distribution and display. Various evaluation measurements are used in the assessment of image quality, and, of these, the required number of quantization bits is one of the most important factors in realizing the very high quality images needed for cinema. While DCI defined 12 bits for the bit depth by applying Barten's model to just the luminance signal, actual cinema applications use color signals, so we can say that this value has an insufficient theoretical basis. This paper, first of all, investigates the required number of quantization bits by computer simulations in discrete 3-D space for the color images defined using CIE's XYZ signal. Next, the required number of quantization bits is formulated by applying Taylor's development in the continuous value region. As a result, we show that 13.04 bits, 11.38 bits, and 10.16 bits are necessary for intensity, density, and gamma-corrected signal quantization, respectively, for digital cinema applications. As these results coincide with those from calculations in the discrete value region, the proposed analysis method enables a drastic reduction in the computer simulation time needed for obtaining the required number of quantization bits for color signals.

  • Optical Signal-to-Noise Ratio Monitoring in Optical Transport Networks Using OXCs or Reconfigurable OADMs

    Ji Wook YOUN  Kyung Whan YEOM  Bheom Soon JOO  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:5
      Page(s):
    1225-1227

    We propose and experimentally demonstrate a simple method for monitoring optical signal-to-noise ratio. The novel method can be used in the optical transport networks using optical cross-connects or reconfigurable optical add-drop multiplexers. OSNR is measured by monitoring the transmitted optical power and the reflected optical power from fiber Bragg grating. We have obtained OSNR with an error less than 0.8 dB.

  • Global Noise Estimation Based on Tensor Product Expansion with Absolute Error

    Akitoshi ITAI  Hiroshi YASUKAWA  Ichi TAKUMI  Masayasu HATA  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    778-783

    This paper proposes a novel signal estimation method that uses a tensor product expansion. When a bivariable function, which is expressed by two-dimensional matrix, is subjected to conventional tensor product expansion, two single variable functions are calculated by minimizing the mean square error between the input vector and its outer product. A tensor product expansion is useful for feature extraction and signal compression, however, it is difficult to separate global noise from other signals. This paper shows that global noise, which is observed in almost all input signals, can be estimated by using a tensor product expansion where absolute error is used as the error function.

  • Hamiltonian Cycles and Hamiltonian Paths in Faulty Burnt Pancake Graphs

    Keiichi KANEKO  

     
    PAPER-Algorithm Theory

      Vol:
    E90-D No:4
      Page(s):
    716-721

    Recently, research on parallel processing systems is very active, and many complex topologies have been proposed. A burnt pancake graph is one such topology. In this paper, we prove that a faulty burnt pancake graph with degree n has a fault-free Hamiltonian cycle if the number of the faulty elements is n-2 or less, and it has a fault-free Hamiltonian path between any pair of nonfaulty nodes if the number of the faulty elements is n-3 or less.

  • Chip-Level Performance Maximization Using ASIS (Application-Specific Interconnect Structure) Wiring Design Concept for 45 nm CMOS Generation

    Noriaki ODA  Hironori IMURA  Naoyoshi KAWAHARA  Masayoshi TAGAMI  Hiroyuki KUNISHIMA  Shuji SONE  Sadayuki OHNISHI  Kenta YAMADA  Yumi KAKUHARA  Makoto SEKINE  Yoshihiro HAYASHI  Kazuyoshi UENO  

     
    PAPER-Device

      Vol:
    E90-C No:4
      Page(s):
    848-855

    A novel interconnect design concept named "ASIS (Appilication-specific Interconnect Structure)" is presented for 45 nm CMOS performance maximization. Basic scheme of ASIS is that corresponding to applications, such as high-performance, low-power, or high reliability, interconnect structure as well as metal thickness is individually optimized in order to maximize chip-level performance matched to the application. Our investigation shows that for low-power application, the increased resistivity of scaled-down Cu-wire is not a main issue, so that thinner wire is more advantageous. For high-performance application, partially double pitch structure for local and intermediate layers is advantageous. For high-reliability requirement, Cu-Al alloy or CoWP cap-metal is quite effective for boosting reliability.

  • MLSE Detection with Blind Linear Prediction for Differential Space-Time Block Code Systems

    Seree WANICHPAKDEEDECHA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    926-933

    This paper proposes a maximum likelihood sequence estimation (MLSE) for the differential space-time block code (DSTBC) in cooperation with blind linear prediction (BLP) of fast frequency-flat fading channels. This method that linearly predicts the fading complex envelope derives its linear prediction coefficients by the method of Lagrange multipliers, and does not require data of decision-feedback or information on the channel parameters such as the maximum Doppler frequency in contrast to conventional ones. Computer simulations under fast fading conditions demonstrate that the proposed method with an appropriate degree of polynomial approximation is superior in BER performance to the conventional method that estimates the coefficients by the RLS algorithm using a training sequence.

  • Boosted Voltage Scheme with Active Body-Biasing Control on PD-SOI for Ultra Low Voltage Operation

    Masaaki IIJIMA  Masayuki KITAMURA  Masahiro NUMA  Akira TADA  Takashi IPPOSHI  Shigeto MAEGAWA  

     
    PAPER-Digital

      Vol:
    E90-C No:4
      Page(s):
    666-674

    In this paper, we propose an Active Body-biasing Controlled (ABC)-Bootstrap PTL (Pass-Transistor Logic) on PD-SOI for ultra low power design. Although simply lowering the supply voltage (VDD) causes a lack of driving power, our boosted voltage scheme employing a strong capacitive coupling with ABC-SOI improves a driving power and allows lower voltage operation. We also present an SOI-SRAM design boosting the word line (WL) voltage higher than VDD in short transition time without dual power supply rails. Simulation results have shown improvement in both the delay time and power consumption.

  • A DS-CDMA Cellular System Using Band Division and Channel Segregation Distributed Channel Allocation

    Suguru SUGAWARA  Eisuke KUDOH  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    904-909

    In DS-CDMA cellular communications systems, the single frequency reuse can be utilized. Since large other-cell interference is produced, the well known soft handover or site diversity must be used. If the single frequency reuse is not utilized to avoid the other-cell interference, we will face the frequency allocation problem, similar to FDMA systems. In this paper, a DS-CDMA cellular system using band division is proposed. The available wide frequency band is divided into several narrow frequency bands and the different frequency bands are allocated to adjacent cells so as to avoid the large other-cell interference. For the frequency allocation, the channel segregation distributed channel allocation (CS-DCA) algorithm is applied. The link capacity is evaluated by computer simulation.

  • Quantitative Prediction of On-Chip Capacitive and Inductive Crosstalk Noise and Tradeoff between Wire Cross-Sectional Area and Inductive Crosstalk Effect

    Yasuhiro OGASAHARA  Masanori HASHIMOTO  Takao ONOYE  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    724-731

    Capacitive and inductive crosstalk noises are expected to be more serious in advanced technologies. However, capacitive and inductive crosstalk noises in the future have not been concurrently and sufficiently discussed quantitatively, though capacitive crosstalk noise has been intensively studied solely as a primary factor of interconnect delay variation. This paper quantitatively predicts the impact of capacitive and inductive crosstalk in prospective processes, and reveals that interconnect scaling strategies strongly affect relative dominance between capacitive and inductive coupling. Our prediction also makes the point that the interconnect resistance significantly influences both inductive coupling noise and propagation delay. We then evaluate a tradeoff between wire cross-sectional area and worst-case propagation delay focusing on inductive coupling noise, and show that an appropriate selection of wire cross-section can reduce delay uncertainty at the small sacrifice of propagation delay.

  • Adaptive Supply Voltage for Low-Power Ripple-Carry and Carry-Select Adders

    Hiroaki SUZUKI  Woopyo JEONG  Kaushik ROY  

     
    PAPER-Electronic Circuits

      Vol:
    E90-C No:4
      Page(s):
    865-876

    Demands for the low power VLSI have been pushing the development of aggressive design methodologies to reduce the power consumption drastically. To meet the growing demand, we propose low power adders that adaptively select supply voltages based on the input vector patterns. First, we apply the proposed scheme to the Ripple Carry Adder (RCA). A prototype design by a 0.18 µm CMOS technology shows that the Adaptive VDD 32-bit RCA achieves 25% power improvement over the conventional RCA with similar speed. The proposed adder cancels out the delay penalty, utilizing two innovative techniques: carry-skip techniques on the checking operands, and the use of Complementary Pass Transistor Logic (CPL) with dual supply voltage for level conversion. As an expansion to faster adder architectures, we extend the proposal to the Carry-Select Adders (CSA) composed of the RCA sub-blocks. We achieved 24% power improvement on the 128-bit CSA prototype over a conventional design. The proposed scheme also achieves stand-by leakage power reduction--for 32-bit and 128-bit Adaptive RCA and CSA, respectively, 62% and 54% leakage reduction was possible.

  • Detection and Parameter Estimation of LFM Signal Using Integration of Fractional Gaussian Window Transform

    Jiaqiang LI  Ronghong JIN  JunPing GENG  Yu FAN  Wei MAO  

     
    PAPER-Sensing

      Vol:
    E90-B No:3
      Page(s):
    630-635

    In this paper, Integration of Fractional Gaussian Window transform (IFRGWT) is proposed for the parameter estimation of linear FM (LFM) signal; the proposal is based on the integration of the Fractional Fourier transform modified by Gaussian Window. The peak values can be detected by adjusting the standard deviation of Gaussian function and locating the optimal rotated angles. And also the parameters of the signal can be estimated well. As an application, detection and parameter estimation of multiple LFM signals are investigated in low signal-to-noise ratios (SNRs). The analytic results and simulations clearly demonstrate that the method is effective.

  • Curriculum Design and Evaluation for E-Commerce Security Education Using AHP

    Hyunwoo KIM  Younggoo HAN  Myeonggil CHOI  Sehun KIM  

     
    PAPER-Educational Technology

      Vol:
    E90-D No:3
      Page(s):
    668-675

    Due to the exponentially increasing threat of cyber attacks, many e-commerce organizations around the world have begun to recognize the importance of information security. When considering the importance of security in e-commerce, we need to train e-commerce security experts who can help ensure the reliable deployment of e-commerce. The purpose of this research is to design and evaluate an e-commerce security curriculum useful in training e-commerce security experts. In this paper, we use a phase of the Delphi method and the Analytic Hierarchy Process (AHP) method. To validate our results, we divide the respondents into two groups and compare the survey results.

1241-1260hit(2667hit)