The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sputter(60hit)

21-40hit(60hit)

  • A Study on Temporal Dark Image Sticking in AC-PDP Using Vacuum-Sealing Method

    Choon-Sang PARK  Heung-Sik TAE  

     
    PAPER-Electronic Displays

      Vol:
    E92-C No:1
      Page(s):
    161-165

    Minimizing the residual impurity gases is a key factor for reducing temporal dark image sticking. Therefore, this paper uses a vacuum-sealing method that minimizes the residual impurity gases by enhancing the base vacuum level, and the resultant change in temporal dark image sticking is then examined in comparison to that with the conventional sealing method using 42-in. ac-PDPs with a high Xe (11%) content. As a result of monitoring the difference in the display luminance, infrared emission, and perceived luminance between the cells with and without temporal dark image sticking, the vacuum-sealing method is demonstrated to reduce temporal dark image sticking by decreasing the residual impurity gases and increasing the oxygen vacancy in the MgO layer. Furthermore, the use of a modified driving waveform along with the vacuum-sealing method is even more effective in reducing temporal dark image sticking.

  • Characterization of Zinc Oxide and Pentacene Thin Film Transistors for CMOS Inverters

    Hiroyuki IECHI  Yasuyuki WATANABE  Hiroshi YAMAUCHI  Kazuhiro KUDO  

     
    PAPER-Transistors

      Vol:
    E91-C No:12
      Page(s):
    1843-1847

    We fabricated both thin film transistors (TFTs) and diodes using zinc oxide (ZnO) and pentacene, and investigated their basic characteristics. We found that field-effect mobility is influenced by the interface state between the semiconductor and dielectric layers. Furthermore, the complementary metal oxide semiconductor (CMOS) inverter using a p-channel pentacene field-effect transistor (FET) and an n-channel ZnO FET showed a relatively high voltage gain (8-12) by optimizing the device structure. The hybrid complementary inverters described here are expected for application in flexible displays, radio frequency identification cards (RFID) tags, and others.

  • Characteristcs of Ga-Doped ZnO Films Prepared by RF Magnetron Sputtering in Ar+H2 Ambience

    Koichi MUTO  Satoru ODASHIMA  Norimitsu NASU  Osamu MICHIKAMI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1649-1652

    Ga-doped ZnO thin films were prepared by RF magnetron sputtering. The effects of adding H2 to pure Ar sputtering gas were investigated. In the case of pure Ar at 2 Pa, the resistivity is 7.4510-3 Ωcm, whereas for Ar+1%H2 at 0.3 Pa, it markedly decreases to 2.5210-4 Ωcm. In this case, the carrier density and Hall mobility are 1.121021 cm-3 and 23.4 cm2/Vs, respectively. This conductive film also exhibits a transmittance of 90% within the visible-wavelength range. The addition of H2 and the decrease in the pressure results in the fabrication of a significantly more transparent and conductive film.

  • Fabrication of Rugate Optical Filters Using a-SiOx:H Thin Films

    Hidehiko YODA  Koichi MURO  Kazuo SHIRAISHI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1639-1643

    Rugate thin film optical filters are useful for designing arbitrary-shaped spectra, such as multistep or triangular spectra. A technique for synthesizing the refractive index distribution of rugate filters was used to suppress unwanted ripples on the spectrum. The refractive index of an amorphous hydrogenated silicon oxide (a-SiOx:H) rugate thin film was minutely controlled with a resolution of 0.001 using radio-frequency (RF) magnetron sputtering. The fabricated rugate filters had multistep bands over a wavelength range of 1260-1670 nm or good linearity over 1290-1650 nm.

  • Estimation of Optimum Ion Energy for the Reduction of Resistivity in Bias Sputtering of ITO Thin Films

    Kiyoshi ISHII  Yoshifumi SAITOU  Kengo FURUTANI  Hiroshi SAKUMA  Yoshito IKEDA  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1653-1657

    Tin-doped indium oxide (ITO) thin films were prepared on a polyethylene terephthalate (PET) foil by bias sputtering. In the absence of a substrate bias, films having a high resistivity of 210-2 Ωcm were formed. On the other hand, by the application of an rf substrate bias, films having a low resistivity of 2.610-4 Ωcm were formed. The energy of ions that bombarded the substrate during bias sputtering was estimated by a simulation of the ion acceleration. The optimum ion-energy required for the reduction of resistivity was found to be approximately 50 eV.

  • Investigation of Low-Damage Sputter-Deposition of ITO Films on Organic Emission Layer

    Hao LEI  Keisuke ICHIKAWA  Meihan WANG  Yoichi HOSHI  Takayuki UCHIDA  Yutaka SAWADA  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1658-1662

    The damage to the organic layer of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) film was investigated on the basis of the change in photoluminescence (PL) intensity. To suppress the bombardment of the substrate with high-energy particles such as γ-electrons and negative oxygen ions, we used a facing-target sputtering (FTS) system. A marked reduction, however, of the PL intensity of the organic layer was still observed upon the deposition of an indium tin oxide (ITO) film on the organic film. To reduce this reduction, we proposed the insertion of a sector-shaped metal shield near the target electrode, and we showed its effectiveness in reducing the damage. This reduction of the damage is thought to be caused by the elimination of γ-electrons incident to the organic film surface escaping from the target area near the substrate side. We confirmed that high-energy electron bombardment leads to a significant reduction of PL intensity of the organic layer. This indicates that high-energy electrons incident to the organic film surface play a key role in the damage of the organic layer during the sputtering process.

  • High-Rate Oblique Deposition of SiO2 Films Using Two Sputtering Sources

    Yoichi HOSHI  Kensuke YAGI  Eisuke SUZUKI  Hao LEI  Akira SAKAI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1644-1648

    In this paper, we proposed a new high-rate oblique deposition method using two sputtering sources to obtain SiO2 films for a liquid crystal alignment layer. One sputtering source that operates in a metal mode supplies Si atoms to a substrate, and the other source that operates in an oxide mode supplies oxygen radicals to a substrate. To reduce the gas pressure of a deposition chamber and make the two sputtering sources operate in different modes, the sputtering sources were separated from the deposition chamber with stainless meshes, and Ar and oxygen gases were introduced separately through the two sputtering sources, i.e., Ar gas was introduced through the Si supply source and oxygen gas was introduced through the oxygen radical source. When Ar gas of 30 sccm and oxygen gas of 4 sccm were introduced into the system, the gas pressure of the deposition chamber was maintained below 1.7 mTorr and the films deposited at an incidence angle of more than 70 showed an elongated inclined columnar structure. Under this condition, a deposition rate of 30 nm/min was realized even at an incidence angle above 70, where most of the Si atoms incident to the substrate were supplied by the Si supply source and the oxygen radical source supplied oxygen radicals and promoted the oxidation of the film.

  • Observation of Blue-Light Emission from Tantalum Oxide Films Deposited by Radio-Frequency Magnetron Sputtering

    Kenta MIURA  Hiroki MIYAZAKI  Osamu HANAIZUMI  

     
    PAPER

      Vol:
    E91-C No:10
      Page(s):
    1669-1672

    We obtained blue photoluminescence from tantalum oxide films deposited by radio-frequency magnetron sputtering after annealing. The maximum peak intensity of the photoluminescence was observed from a sample annealed at 600 for 20 min, and the peak wavelength was approximately 430 nm. Tantalum oxide films that emit blue light may be useful materials for novel active optical devices utilizing Ta2O5/SiO2 multilayered photonic crystals.

  • Indirectly Reactive Sputtering Coater for High Quality Optical Coatings

    Kei-ichi C. NAMIKI  Xinbin CHENG  Haruo TAKAHASHI  

     
    LETTER

      Vol:
    E91-C No:10
      Page(s):
    1673-1674

    An indirectly reactive sputtering coater has been developed to deposit various high quality metallic and metal oxide films at high deposition rate. In this letter, several kinds of filters such as antireflection (AR) coating, IR-cut filter, and Rugate filter were deposited for the benchmark test of implemental capabilities. Our coater was established to be a powerful tool for both discrete multilayer and Rugate filters due to high stability and reproducibility of the refractive index and the deposition rate.

  • Ka-Band Triangular Patch Antenna on Micromachined High-k Substrate

    Preeti SHARMA  Shiban K. KOUL  Sudhir CHANDRA  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:6
      Page(s):
    2073-2076

    This letter reports a high-performance Ka-band equilateral triangular microstrip patch (ETMP) antenna suspended on a thin dielectric membrane. The membrane is released using a silicon bulk-micromachining technique. A set of closed-form expressions to calculate the resonant frequency of the proposed antenna on the micromachined substrate is also presented. The measured performance of the antenna structure is verified using the finite element method (FEM) based Agilent High Frequency Structure Simulator (version 5.5). The fabricated antenna exhibited a wide -10 dB return loss bandwidth of 1.2 GHz at 35.4 GHz. The measured antenna cross-polarization level is less than -15 dB in both the E- and H-planes.

  • Sputter Erosion Model of Arcing Contact Materials

    Zhenbiao LI  Xixiu WU  Hassan NOURI  Makoto HASEGAWA  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E90-C No:7
      Page(s):
    1356-1360

    The sputter erosion of arcing contacts is a very complex phenomenon, which is determined by the interaction between electromagnetic force, heat conduction and surface tension of liquid metal. A new model for evaluating the sputter erosion of electrodes is described in this paper, which is based on the electromagnetic forces against the molten pool, flowing velocity, kinetic energy and the surface tension of the molten pool. Erosion tests on AgSnO2, AgNi10 and AgNi0.15 contacts under the loads of resistance, lamp and inductance respectively at 14 VDC have been carried out. Experimental results indicate good agreement with the model's simulation. The model shows how the current and density, specific heat and other parameters of material affect the erosion rate.

  • Ultrathin HfOxNy Gate Insulator Formation by Electron Cyclotron Resonance Ar/N2 Plasma Nitridation of HfO2 Thin Films

    Shun-ichiro OHMI  Tomoki KUROSE  Masaki SATOH  

     
    PAPER-Si Devices and Processes

      Vol:
    E89-C No:5
      Page(s):
    596-601

    HfOxNy thin films formed by the electron cyclotron resonance (ECR) Ar/N2 plasma nitridation of HfO2 films were investigated for high-k gate insulator applications. HfOxNy thin films formed by the ECR Ar/N2 plasma nitridation (60 s) of 1.5-nm-thick HfO2 films, which were deposited on chemically oxidized Si(100) substrates, were found to be effective for suppressing interfacial layer growth or crystallization during postdeposition annealing (PDA) in N2 ambient. After 900 PDA of for 5 min in N2 ambient, it was found that HfSiON film with a relatively high dielectric constant was formed on the HfOxNy/Si interface by Si diffusion. An equivalent oxide thickness (EOT) of 2.0 nm and a leakage current density of 1.010-3 A/cm2 (at VFB-1 V) were obtained. The effective mobility of the fabricated p-channel metal-insulator-semiconductor field-effect transistor (MISFET) with the HfOxNy gate insulator was 50 cm2/Vs, and the gate leakage current of the MISFET with the HfOxNy gate insulator was found to be well suppressed compared with the MISFET with the HfO2 gate insulator after 900 PDA because of the nitridation of HfO2.

  • High-Luminance EL Devices Using Zn2Si1-XGeXO4:Mn Thin Films Prepared by Combinatorial Deposition by r.f. Magnetron Sputtering with Subdivided Powder Targets

    Toshihiro MIYATA  Yu MOCHIZUKI  Tadatsugu MINAMI  

     
    INVITED PAPER

      Vol:
    E88-C No:11
      Page(s):
    2065-2069

    A new technique incorporating combinatorial deposition to develop thin-film phosphors by r.f. magnetron sputtering is demonstrated using subdivided powder targets. In comparison with development using conventional r.f. magnetron sputtering, the atomic ratios of Si and Ge as well as the Mn content in Zn2Si1-XGeXO4:Mn thin film phosphors could be more efficiently optimized in order to obtain the highest intensity in electroluminescent and photoluminescent emissions. High luminances of 11800 and 1536 cd/m2 were obtained in Zn2Si0.6Ge0.4O4:Mn thin-film electroluminescent devices fabricated under optimized conditions and driven at 1 kHz and 60 Hz, respectively.

  • Fabrication of La-Doped YBCO and SrTiO3-Buffered LSAT Thin Films for Ramp-Edge Josephson Junctions on Superconducting Ground Plane

    Seiji ADACHI  Hironori WAKANA  Yoshihiro ISHIMARU  Masahiro HORIBE  Yoshinobu TARUTANI  Keiichi TANABE  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    206-211

    The deposition conditions of Y0.9Ba1.9La0.2Cu3Oy (La-YBCO) and (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) thin films were studied with the aim of fabricating ramp-edge Josephson junctions on a superconducting ground plane. These films were deposited by a magnetron sputtering method and utilized as a base electrode and an insulating layer under the electrode, respectively. YBa2Cu3Oy thick films grown by liquid phase epitaxy (LPE-YBCO) were used for a ground plane. Insertion of a SrTiO3 buffer layer between LSAT and LPE-YBCO significantly improved the flatness of the film surface. La-YBCO films with a flat surface and Tc (zero) of 87K were reproducibly obtained by DC sputtering. We have fabricated ramp-edge Josephson junctions using these films. Resistively and capacitively shunted junction (RCSJ)-like characteristics were observed in them. An Ic spread of 10.2% (at 4.2K, average Ic = 0.5 mA) was obtained for a 1000-junction series-array.

  • AFM/STM Observation of C-Au-S Conductive Granular Molecule by Co-operation Process of Plasma CVD and Sputtering

    Mikinori SUZUKI  Md. Abul KASHEM  Shinzo MORITA  

     
    PAPER-Organic-neuro Systems

      Vol:
    E87-C No:2
      Page(s):
    179-182

    AFM/STM observations were performed on sub nm thick C-Au-S film by co-operation process of plasma CVD and sputtering with using CH4, SF6 and Ar mixture gas and Au plate discharge electrode. From the refractive index values, the conductive granular molecules with a size of 0.4-0.6 nm were expected to exist in the film. For the film at thickness similar to the molecular size, Ra (arithmetic mean departures of roughness profile from the mean line) values were measured to be 0.712/6.10 nm by AFM/STM measurement, respectively. The one order large STM Ra value compared to the AFM Ra value suggests that the film contains conductive granular molecules.

  • Preparation of Cuprous Oxide (Cu2O) Thin Films by Reactive DC Magnetron Sputtering

    Kiichi KAMIMURA  Haruki SANO  Katsuya ABE  Rinpei HAYASHIBE  Tomohiko YAMAKAMI  Masato NAKAO  Yoshiharu ONUMA  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    193-196

    Cuprous Oxide Cu2O films were deposited by reactive DC magnetron sputtering. The substrate temperature and oxygen partial pressure were found to be important parameters in controlling the film property. The single-phase Cu2O films were successfully obtained by carefully controlling the oxygen partial pressure with suppression of CuO formation. The (100)-oriented epitaxial Cu2O film was grown on the (102) surface of single-crystal Al2O3. The fundamental absorption edge of the Cu2O film was determined to be about 2 eV by photo-transmission measurement. The resistivity of the film was of the order of 105 Ωcm.

  • Low Temperature Deposition of Indium Tin Oxide Thin Films by Low Voltage Sputtering in Various Rare Gases

    Yoichi HOSHI  Hidehiko SHIMIZU  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    212-217

    Indium tin oxide (ITO) films were deposited at a temperature below 50 by a low-voltage sputtering system. The sputtering voltage was fixed at 100 V and Ar, Kr, and Xe were used as the sputtering gases. Compared with the sputtering in Ar gas, the sputtering in Kr or Xe gas caused a significant suppression of crystallization of the deposited film and resulted in the formation of amorphous films. These films had much lower resistivities than the films deposited using Ar gas, since the Hall mobility of the films had a larger value. Typical Hall mobility and carrier density are 50 cm2/Vsec, and 51020 cm-3, respectively. This improvement was attributable to the reduction of high-energy particle bombardment to the film surface in the sputtering. These films are stable at a temperature below 150, and crystallization occurs at a temperature above 150.

  • Superconducting Properties of EuBa2Cu3O7 Thin Films Deposited on R-Plane Sapphires with CeO2Sm2O3 Buffer Layers Using Magnetron Sputtering

    Osamu MICHIKAMI  Yasuyuki OTA  Shinji KIKUCHI  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    197-201

    In order to improve the critical current density (Jc) of c-axis-oriented EuBa2Cu3O7 (c-EBCO) thin films deposited on R-plane sapphires (R-Al2O3) with a CeO2 buffer layer, insertion of an Sm2O3 buffer layer and optimization of its deposition condition were attempted. The effects of substrate temperature and film thickness of an Sm2O3 buffer layer on the orientation, crystallinity, surface morphology and superconducting properties of EBCO thin films were examined. As a result, EBCO thin films with Jc = 5.7 MA/cm2 at 77.3 K were obtained on a sapphire with a CeO2(80 )Sm2O3(200 ) buffer layer. Epitaxial relations of sputter-deposited films were clarified.

  • High Rate Sputter-Deposition of TiO2 Films Using Oxide Target

    Yoichi HOSHI  Tomoki TAKAHASHI  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    227-231

    The sputter-deposition process of TiO2 thin films was investigated. When an oxide target is used, high-rate deposition above 57 nm/min can be realized by sputtering under a condition of low oxygen gas content. Under this sputtering condition, a Ti rich surface layer is formed by selective sputtering of oxygen atoms, and a large amount of Ti atoms are sputtered from this layer. The deposition rate, however, decreases steeply as the oxygen gas content increases. This decrease can be explained as follows. When a sufficient amount of oxygen gas is supplied into the chamber during sputtering, the oxygen atoms which are missing from the target surface by selective sputtering are filled up immediately. This leads to a very low deposition rate of the film, because only oxygen atoms are sputtered from the target. Therefore, the suppression of the incidence of oxygen gas to the target surface and a sufficient of oxygen supply to the substrate are necessary to realize the high-rate deposition of stoichiometric TiO2 films. From this point of view, using an oxide target instead of a metal target is useful for realizing a stable high-rate deposition of the film, since the amount of oxygen gas introduced in to the sputtering chamber can be reduced significantly. In addition, it was confirmed that pulse sputtering method is a useful technique for the deposition of TiO2 thin films. Meanwhile, low-voltage sputtering technique was difficult to use for the film deposition because of its low deposition rate.

  • High-Rate Deposition of Titanium Dioxide Films with Photocatalytic Activities by Gas Flow Sputtering

    Kiyoshi ISHII  Kazunari KUROKAWA  Sachio YOSHIHARA  

     
    PAPER

      Vol:
    E87-C No:2
      Page(s):
    232-237

    Photocatalytic TiO2 films were prepared by reactive gas flow sputtering (GFS), which enables sputter-deposition at a high pressure of about 100 Pa. A pure Ti tube was used as the target, and the O2 gas was supplied in front of the substrate, resulting in a very stable discharge and a high deposition rate of 80 nm/min. The crystal structure and morphology of TiO2 films were found to strongly depend on the flow rate of O2 gas during sputtering. Polycrystalline films composed of rutile and anatase crystallites were deposited at a low O2 flow rate of less than 2 sccm when Ar flow rate was set at 300 sccm, and amorphous films were deposited at higher O2 flow rates. Polycrystalline films composed of very small crystallites showed high levels of photocatalytic activity, while amorphous films showed no activity.

21-40hit(60hit)