The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] surface(404hit)

381-400hit(404hit)

  • Resonance Absorptions in a Metal Grating with a Dielectric Overcoating

    Toyonori MATSUDA  Yoichi OKUNO  

     
    LETTER-Scattering and Diffraction

      Vol:
    E76-C No:10
      Page(s):
    1505-1509

    Field distributions and energy flows of the surface waves excited in singlelayer-overcoated gratings are evaluated in order to investigate the behavior of the resonance absorption in the grating.

  • Analysis of Wave Guidance by Surface-Relief Grating Waveguides for Oblique Propagation

    Keiji MATSUMOTO  Katsu ROKUSHIMA  Jiro YAMAKITA  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1498-1504

    An analysis of wave guidance by surface-relief grating waveguides is presented for the case of oblique propagation. This analysis is based on the first-order differential equations expressing the coupling of the space harmonics and an improved differential method is applied to solve the equations in the grating region with arbitrary profile. The propagation constants are calculated for isotropic grating waveguids with sinusoidal profile and the calculated results indicate that the accurate solutions can be obtained by increasing the number of expansion terms and the number of segments. Moreover, this method is extended to the case of the analysis of obliquely propagating waves and it is shown that peculiar leaky waves and stop bands appear owing to the coupling between TE and TM waves.

  • FDTD Analysis of Two-Dimensional Cavity-Backed Antenna for Subsurface Radar

    Osamu MAESHIMA  Toru UNO  Yiwei HE  Saburo ADACHI  

     
    PAPER-Transient Field

      Vol:
    E76-C No:10
      Page(s):
    1468-1473

    The antennas for subsurface radar are usually covered with a conducting cavity to prevent the radiation field from affecting the electromagnetic environment and to protect the received field from external noises. Furthermore, radiowave absorber is attached to the interior wall of the cavity in order to suppress the multiple reflections in the cavity. In this paper, the characteristics of the two-dimensional cavity-backed antenna having the absorber and the over-all properties of this subsurface radar due to buried objects are numerically analyzed by the Finite-Difference Time-Domain method. It is shown that the pulse propagation in the ground is confined to the narrow region due to the cavity. It is also shown that the multiple reflections in the cavity are effectively suppressed by choosing the suitable absorber, and so that the distinctive pulse echo can be obtained.

  • Recent Progress in Borehole Radars and Ground Penetrating Radars in Japan

    Motoyuki SATO  Tsutomu SUZUKI  

     
    INVITED PAPER

      Vol:
    E76-B No:10
      Page(s):
    1236-1242

    This paper describes fundamental system of borehole radars and its recent progress in Japan. Early development of borehole radars were carried out for detection of cracks in crystallized rock, however, the fields of applications are expanding to other various objects such as soil and sedimental rocks. Conventionally developed radar systems are not necessarily suitable for these applications and they must be modified. New technologies such as radar polarimetry and radar tomography were also introduced.

  • Statistical Property and Signal Processing of Received Wave of Subsurface Radar

    Kihachiro TAKETOMI  Yasumitsu MIYAZAKI  

     
    PAPER-Subsurface Radar

      Vol:
    E76-B No:10
      Page(s):
    1285-1289

    This paper proposes that the statistical property of the wave form obtained by a pulse type subsurface radar follows the Weibull probability density distribution. The shape parameter of this distribution is related to the underground condition. By using the shape parameter, we calculated the statistical variance. The ratio of the variance of target area to that of non-target area in invisible medium is evaluated for the effect of the radar signal processing. Over 20dB improvement, for example, can be obtained by means of Log/CFAR processing. It made clear that the cell size of processing should be selected the length corresponding to self-correlation.

  • First Room Temperature CW Operation of GaInAsP/InP Surface Emitting Laser

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Fimio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E76-C No:9
      Page(s):
    1423-1424

    We have achieved the room temperature cw lasing operation of GaInAsP/InP surface emitting lasers for the first time. By employing a buried heterostructure with 1.3 µm range active region and a MgO/Si heat sink mirror, cw operation was obtained up to 14 with the threshold current of 22 mA.

  • Investigation on the Possible Electric Field Effect and Surface Morphology of a YBCO/CeO2/Au MIS Diode

    Qian WANG  Ienari IGUCHI  

     
    PAPER

      Vol:
    E76-C No:8
      Page(s):
    1271-1274

    A YBCO/CeO2/Au MIS structure (YBCO:YBa2Cu3O7y) is fabricated on a MgO(100) substrate with the help of the all-in-situ electron-beam and heater coevaperation system. The current-voltage (I-V) characteristics of the deposited YBCO film under various gate voltages are examined. Small modulation of the I-V characteristics by gate voltages can be observed. Meanwhile, the surface morphology is also studied by means of an atomic force microscope (AFM). The relation between the field effect and the surface morphology of a thin YBCO film is discussed.

  • Surface Reconstruction Model for Realistic Visualization

    Hiromi T. TANAKA  Fumio KISHINO  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    494-500

    Surface reconstruction and visualization from sparse and incomplete surface data is a fundamental problem and has received growing attention in both computer vision and graphics. This paper presents a computational scheme for realistic visualization of free-formed surfaces from 3D range images. The novelty of this scheme is that by integrating computer vision and computer graphics techniques, we dynamically construct a mesh representation of the arbitrary view of the surfaces, from a view-invariant shape description obtained from 3D range images. We outline the principle of this scheme and describle the frame work of a graphical reconstruction model, we call arbitrarily oriented meshes', which is developed based on differential geometry. The experimental results on real range data of human faces are shown.

  • A New Method for Smooth Interpolation without Twist Constraints

    Caiming ZHANG  Takeshi AGUI  Hiroshi NAGAHASHI  Tomoharu NAGAO  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E76-D No:2
      Page(s):
    243-250

    A new method for interpolating boundary function values and first derivatives of a triangle is presented. This method has a relatively simple construction and involves no compatibility constraints. The polynomial precision set of the interpolation function constructed includes all the cubic polynomial and less. The testing results show that the surface produced by the proposed method is better than the ones by weighted combination schemes in both of the fairness and preciseness.

  • Effect of the Oil Film Thickness on Corrosion Inhibition of Contact Surface in View of Contact Resistance Characteristics--On the Stearic Acid Coating--

    Terutaka TAMAI  

     
    PAPER-Components

      Vol:
    E76-C No:2
      Page(s):
    318-325

    Reactive gases such air pollution agents as H2S or SO2 usually corrode the electrical contact surfaces. Since corrosion products formed on the surface increase contact resistance, they harmfully degrades contact reliability. To prevent the corrosion of the surface, oil coating on it may be effective. The oil film acts basically as a barrier for reaction between the corrosive gas and the surface. For thin film coating, the corrosion inhibition can not be expected. However, effect of film thickness on the corrosion property has not been clarified. In the present study, in order to clarify the corrosion inhibition of the oil coating for the contacts, the stearic acid coating on Ag (silver) contact surface was studied from view-point of the relationship between the thickness of the coating film and the contact resistance. As results, the effect of the stearic acid coating on corrosion inhibition in the atmosphere contained with H2S 3 ppm was found. However, the corrosion of the surface coated with thin stearic acid film occurred at microscopically scattered thin patiches in the specific pattern of the film. Existing of the optimum thickness of the stearic acid coating which gives both minimum contact resistance and effective corrosion inhibition was found. In the intermediate film thickness, this optimum thickness was induced by the increased contact resistance due to corrosion of the thin film region and insulation property of the stearic acid in the thick film region. Moreovr,it was found that this optimum thickness was affected by corrosion time. At the early stage of corrosion, the optimum thickness was about 200 . However, the corrosion time becomes longer as 700 min, this optimum thickness changed to thick as 1000 . With this increase in the thickness, the contact resistance in the optimum thickness rised to high level. Furthermore, the contact resistance in the optimum thickness decreased with increase in the contact load. However, dependence of the contact load on the optimum thickness was not recognized under a certain corrosion time.

  • Synchrotron Radiation Induced Direct Projection Patterning of Aluminum on Si and SiO2 Surfaces

    Fumihiko UESUGI  Iwao NISHIYAMA  

     
    PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    47-54

    A new direct projection patterning technique of aluminum using synchrotron radiation (SR) is proposed. It is based on the thermal reaction control effect of SR excitation. In the case of the Si surface, pure thermal growth is possible at 200, however, this growth is suppressed perfectly by SR irradiation. On the other hand, Al growth on the SiO2 surface is impossible at the same temperature thermally, however, SR has an effect to initiate thermal reaction. Both new effects of SR, suppression and initiation, are clarified to be caused by atomic order level thin layers formed from CVD gases by SR excitation on the surfaces. By using these effects, the direct inverse and normal projection patterning of Al are successfully demonstrated.

  • On the Expressions for the Norton's Surface Wave of a Vertical Dipole

    Akira YOKOYAMA  

     
    LETTER-Antennas and Propagation

      Vol:
    E75-B No:12
      Page(s):
    1376-1378

    Ideal style of arguments of the error function complement contained in the expression for the Norton's surface wave of a vertical dipole over the plane earth is discussed, and then it is pointed out that new formulas have not necessarily desired form as compared with old ones.

  • Eliminating Redundant Components While Building Solid Models by Surface Points Evaluation

    Chun YANG  Shan Jun ZHANG  Toshio KAWASHIMA  Yoshinao AOKI  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:11
      Page(s):
    1561-1569

    Existing solid models often contain redundant primitives and null blocks, which both slows down the rendering process and makes the process complex. There has been recent progress toward solving this problem, but existing modeling schemes cannot support eliminating all the redundancies, especially the null blocks, from the solid models. This paper proposed a technique that can eliminate redundancies. By dividing a primitive into some surface dispersed points, a new primitive representation is obtained. The sample segments of the primitive or the object are used to locate composition position to prevent the null primitives from being generated. By drawing out the geometric shape points set corresponding to a common acting area, the volume boundary of a primitive or an object is evaluated by only the Boolean set operations. The null blocks can be picked out in terms of the volume boundary. The resulting solid model generated in this way has no redundancies and is suitable for fast rendering of the image.

  • Evaluation of Surface Damage on a Silicon Wafer Induced by Reactive Ion Etching Using X-Ray Photoeloctron Spectroscopy and Electrical Characteristics

    Akitaka MURATA  Morio NAKAMURA  Akira ASAI  Ichiro TANIGUCHI  

     
    PAPER

      Vol:
    E75-C No:9
      Page(s):
    990-994

    Surface damage to n-type silicon wafers induced by Reactive Ion Etching (RIE) with CF4 gas was evaluated using X-ray photoelectron spectroscopy (XPS) and the current-voltage (I-V) characteristics of Au/n-Si Schottky diodes fabricated on the damaged surface. The reaction products (SiF, SiF2, and SiF3) in the damaged layer were detected by XPS. Assuming the surface damage on a silicon wafer induced by RIE acts as a donor, the donor density was found to be about 21019 cm-3. The distribution of SiF3 and the donor density in the depth direction were almost equal. The thickness of the damaged layer was about 15 nm. These findings suggest that the donor in the damaged layer on a silicon surface induced by RIE may be SiF3.

  • A Method of Obtaining the Maximum Likelihood Initial Height Function for Optimal Movement of a Wire Bonder

    Shengping JIANG  Hiroyuki ANZAI  

     
    PAPER-Computer Aided Design (CAD)

      Vol:
    E75-A No:9
      Page(s):
    1134-1140

    In this paper, we propose a method to simulate the curve surface of the initial height in the movement of the electronic wire bonder using the experimental data. For given measured data (xk, yk, zk (k=1, 2, , m)), we propose an algebraic surface of n-th degree as a methematical model of the initial height surface. The AIC method is a method of evaluating the goodness of a given model. The maximum likelihood model is selected by comparing with the AIC value of each model for n=0, 1, 2, 3, , 11. Useing this model, the initial raise position of the electronic wire bonder can be controlled by computer programing and can make the movement of wire bonder full-automatic. As a resurt, the well-arranged wiring and reliable contacting can be obtained.

  • Removal of Fe and Al on a Silicon Surface Using UV-Excited Dry Cleaning

    Rinshi SUGINO  Yoshiko OKUI  Masaki OKUNO  Mayumi SHIGENO  Yasuhisa SATO  Akira OHSAWA  Takashi ITO  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    829-833

    The mechanism of UV-excited dry cleaning using photoexcited chlorine radicals has been investigated for removing iron and aluminum contamination on a silicon surface. The iron and aluminum contaminants with a surface concentration of 1013 atoms/cm2 were intentionally introduced via an ammonium-hydrogenperoxide solution. The silicon etching rates from the Uv-excited dry cleaning differ depending on the contaminants. Fe and Al can be removed in the same manner. The removal of Fe and Al is highly temperature dependent, and is little affected by the silicon etching depth. Both Fe and Al on the silicon surface were completely removed by UV-excited dry cleaning at a cleaning temperature of 170, and were decreased by two orders of magnitude from the initial level when the surface was etched only 2 nm deep.

  • Influence of Vacancy in Silicon Wafer of Various Types on Surface Microroughness in Wet Chemical Process

    Tadahiro OHMI  Toshihito TSUGA  Jun TAKANO  Masahiko KOGURE  Koji MAKIHARA  Takayuki IMAOKA  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    800-808

    The increase of surface microroughness on Si substrate degrades the electrical characteristics such as the dielectric breakdown field intensity (EBD) and charge to break-down (QBD) of thin oxide film. It has been found that the surface microroughness increases in the wet chemical process, particularly in NH4OH-H2O2-H2O cleaning (APM cleaning). It has been revealed that the surface microroughness does not increase at all if the NH4OH mixing ratio in NH4OH-H2O2-H2O solution is reduced from the conventional level of 1:1:5 to 0.05:1:5, and the room temperature ultrapure water rinsing is introduced right after the APM cleaning. At the same time, the APM cleaning with NH4OH-H2O2-H2O mixing ratio of 0.05:1:5 has been very effective to remove particles and metallic impurities from the Si surface. The surface microroughness dominating the electrical properties of very thin oxide films is strictly influenced by the wafer quality. The increase of surface microroughness due to the APM cleaning has varied among the wafer types such as Cz, FZ and epitaxial (EPI) wafers. The increase of surface microroughness in EPI wafer was very much limited, while the surface microroughness of FZ and Cz wafers gradually increase. As a result of investigating the amount of diffused phosphorus atoms into these wafers, the increase of the surface microroughness in APM cleaning has been confirmed to strongly depend on the silicon vacancy cluster concentration in wafer. The EPI wafer having low silicon vacancy concentration is essentially revealed superior for future sub-half-micron ULSI devices.

  • Reaction of H-Terminated Si(100) Surfaces with Oxidizer in the Heating and Cooling Process

    Norikuni YABUMOTO  Yukio KOMINE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    770-773

    Thermal desorption spectroscopy (TDS) is applied to analyze the oxidation reactions of hydrogen-terminated Si(100) surfaces in both the heating and cooling processes after hydrogen desorption. The oxidation reaction of oxygen and water with a silicon surface after hydrogen desorption shows hysteresis in the heating and cooling processes. In the cooling process, oxidation finishes when the silicon surface is adequately oxidized to about a 10 thickness. Oxidation continues to occur at lower temperatures when the total volume of oxygen and water is too small to saturate the bare silicon surface. The reaction of water with silicon releases hydrogen at more than 500. Hydrogen does not adsorb on the silicon oxide surface. A trace amount of oxygen, less than 110-6 Torr, roughens the surface.

  • Synchrotron Radiation Stimulated Evaporation of a-SiO2 Films and Its Application for Si Surface Cleaning

    Housei AKAZAWA  Yuichi UTSUMI  Jun-ichi TAKAHASHI  Tsuneo URISU  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    781-789

    Synchrotron radiation (SR) irradiation of amorphous SiO2 (a-SiO2) induces continuous removal of the SiO2 film without the use of etching gas. The dependence of the photostimulated evaporation rate on substrate temperature and SR intensity was measured and the reaction mechanism is discussed in detail separately for surface and bulk. Using the high material selectivity of the Sr-stimulated evaporation, a sefl-aligned process to fabricate a 0.6 µm line-and-space pattern is presented. Si surface cleaning is demonstrated as an example of application of this reaction to thin native oxide film grown by wet pretreatment. Si(100)-21 and Si(111)-77 structures were observed by reflection high energy electron diffraction (RHEED) at temperatures as low as 650. The difference between a-SiO2 and native oxide on the evaporation rate is higlighted. Epitaxial Si growth using disilane (Si2H6) gas occurs selectively in the SR-irradiated region on a Si(100) surface. Using SR irradiation in an ultrahigh vacuum, followed by residual oxide reduction by disilane, is proposed as an effective cleaning method.

  • TM Scattering from a Dielectric-Loaded Semi-Circular Trough in a Conducting Plane

    Tah J. PARK  Hyo J. EOM  Wolfgang-M. BOERNER  Yoshio YAMAGUCHI  

     
    LETTER-Antennas and Propagation

      Vol:
    E75-B No:2
      Page(s):
    87-91

    The behavior of TM-wave scattering from a dielectric-loaded semicircular trough in a conducting half-space is investigated. The dielectric loading is made of a circular cylinder which lies in a semi-circular trough in the perfectly conducting plane. The formulation is numerically evaluated to investigate the scattered field pattern for various dielectric loading conditions. It is found that the scattering patterns exhibit the resonant behavior due to both of the concave surface contour and the dielectric loading.

381-400hit(404hit)