The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

221-240hit(3578hit)

  • Study on Scalability in Scientific Research Data Transfer Networks: Energy Consumption Perspectives

    Chankyun LEE  

     
    PAPER-Network Management/Operation

      Pubricized:
    2020/10/23
      Vol:
    E104-B No:5
      Page(s):
    519-529

    Scalable networking for scientific research data transfer is a vital factor in the progress of data-intensive research, such as collaborative research on observation of black hole. In this paper, investigations of the nature of practical research traffic allow us to introduce optical flow switching (OFS) and contents delivery network (CDN) technologies into a wide area network (WAN) to realize highly scalable networking. To measure the scalability of networks, energy consumption in the WAN is evaluated by considering the practical networking equipment as well as reasonable assumptions on scientific research data transfer networks. In this study, we explore the energy consumption performance of diverse Japan and US topologies and reveal that the energy consumption of a routing and wavelength assignment algorithm in an OFS scheduler becomes the major hurdle when the number of nodes is high, for example, as high as that of the United States of America layer 1 topology. To provide computational scalability of a network dimensioning algorithm for the CDN based WAN, a simple heuristic algorithm for a surrogate location problem is proposed and compared with an optimal algorithm. This paper provides intuitions and design rules for highly scalable research data transfer networks, and thus, it can accelerate technology advancements against the encountering big-science problems.

  • Upper Bounds and Constructions of Locating Arrays

    Ce SHI  Jianfeng FU  Chengmin WANG  Jie YAN  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2020/11/13
      Vol:
    E104-A No:5
      Page(s):
    827-833

    The use of locating arrays is motivated by the use of generating software test suites to locate interaction faults in component-based systems. In this paper, we introduce a new combinatorial configuration, with which a general combinatorial description of $(ar{1},t)$-locating arrays is presented. Based on this characterization, a number of locating arrays by means of SSOA and difference covering arrays with prescribed properties are constructed effectively. As a consequence, upper bounds on the size of locating arrays with small number of factors are then obtained.

  • A Feasibility Study of Multi-Domain Stochastic Computing Circuit Open Access

    Tati ERLINA  Renyuan ZHANG  Yasuhiko NAKASHIMA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2020/10/29
      Vol:
    E104-C No:5
      Page(s):
    153-163

    An efficient approximate computing circuit is developed for polynomial functions through the hybrid of analog and stochastic domains. Different from the ordinary time-based stochastic computing (TBSC), the proposed circuit exploits not only the duty cycle of pulses but also the pulse strength of the analog current to carry information for multiplications. The accumulation of many multiplications is performed by merely collecting the stochastic-current. As the calculation depth increases, the growth of latency (while summations), signal power weakening, and disparity of output signals (while multiplications) are substantially avoidable in contrast to that in the conventional TBSC. Furthermore, the calculation range spreads to bipolar infinite without scaling, theoretically. The proposed multi-domain stochastic computing (MDSC) is designed and simulated in a 0.18 µm CMOS technology by employing a set of current mirrors and an improved scheme of the TBSC circuit based on the Neuron-MOS mechanism. For proof-of-concept, the multiply and accumulate calculations (MACs) are implemented, achieving an average accuracy of 95.3%. More importantly, the transistor counting, power consumption, and latency decrease to 6.1%, 55.4%, and 4.2% of the state-of-art TBSC circuit, respectively. The robustness against temperature and process variations is also investigated and presented in detail.

  • Efficient Polling Communications for Multi-Hop Networks Based on Receiver-Initiated MAC Protocol Open Access

    Ryota OKUMURA  Keiichi MIZUTANI  Hiroshi HARADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/11/13
      Vol:
    E104-B No:5
      Page(s):
    550-562

    In this paper, we propose two schemes that improve the delay and the current consumption for efficient polling communications in multi-hop networks based on the receiver-initiated media access control (MAC) protocol. Polling communications can offer reliable data collection by avoiding communication collisions, but the larger delay and current consumption for the round-trip operation should be improved. The first proposal is an enhanced source routing scheme for downlink communications. In the proposed scheme, multiple candidates of relay terminals can be loaded in the routing information, so the route is not specified uniquely. The improvement of the delay and the current consumption is achieved by shortening the waiting time for communication timings based on the flexible routing. The second proposal is a round-trip delay reduction scheme which focuses on the bi-directionality of polling communications. The proposed scheme reduces the round-trip delay by offering frequent communication timings for uplink communications. Also, this paper proposes the joint application of the enhanced source routing scheme and the round-trip delay reduction scheme in polling communications. Computer simulations that suppose a multi-hop network based on the feathery receiver-initiated transmission (F-RIT) protocol in stable channel conditions are carried out. The results show the effectiveness of the proposed schemes in improving the delay and the current consumption. When the polling interval is 900s, the combination of the two proposed schemes improves the round-trip delay by up to 44.1% and the current consumption by up to 38.7% in average.

  • Subsurface Velocity Change Estimation of Pavement with Multistatic GPR System

    Kazutaka KIKUTA  Li YI  Lilong ZOU  Motoyuki SATO  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:4
      Page(s):
    144-147

    In this paper, we propose a cross-correlation method applied to multistatic ground penetrating radar (GPR) data sets to detect road pavement damage. Pavement cracks and delamination cause variations in electromagnetic wave propagation. The proposed method can detect velocity change using cross-correlation of data traces at different times. An artificially damaged airport taxiway model was measured, and the method captures the positions of damaged parts.

  • Approximate Simultaneous Diagonalization of Matrices via Structured Low-Rank Approximation

    Riku AKEMA  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2020/10/15
      Vol:
    E104-A No:4
      Page(s):
    680-690

    Approximate Simultaneous Diagonalization (ASD) is a problem to find a common similarity transformation which approximately diagonalizes a given square-matrix tuple. Many data science problems have been reduced into ASD through ingenious modelling. For ASD, the so-called Jacobi-like methods have been extensively used. However, the methods have no guarantee to suppress the magnitude of off-diagonal entries of the transformed tuple even if the given tuple has an exact common diagonalizer, i.e., the given tuple is simultaneously diagonalizable. In this paper, to establish an alternative powerful strategy for ASD, we present a novel two-step strategy, called Approximate-Then-Diagonalize-Simultaneously (ATDS) algorithm. The ATDS algorithm decomposes ASD into (Step 1) finding a simultaneously diagonalizable tuple near the given one; and (Step 2) finding a common similarity transformation which diagonalizes exactly the tuple obtained in Step 1. The proposed approach to Step 1 is realized by solving a Structured Low-Rank Approximation (SLRA) with Cadzow's algorithm. In Step 2, by exploiting the idea in the constructive proof regarding the conditions for the exact simultaneous diagonalizability, we obtain an exact common diagonalizer of the obtained tuple in Step 1 as a solution for the original ASD. Unlike the Jacobi-like methods, the ATDS algorithm has a guarantee to find an exact common diagonalizer if the given tuple happens to be simultaneously diagonalizable. Numerical experiments show that the ATDS algorithm achieves better performance than the Jacobi-like methods.

  • Service Migration Scheduling with Bandwidth Limitation against Crowd Mobility in Edge Computing Environments

    Hiroaki YAMANAKA  Yuuichi TERANISHI  Eiji KAWAI  

     
    PAPER-Network

      Pubricized:
    2020/09/11
      Vol:
    E104-B No:3
      Page(s):
    240-250

    Edge computing offers computing capability with ultra-low response times by leveraging servers close to end-user devices. Due to the mobility of end-user devices, the latency between the servers and the end-user devices can become long and the response time might become unacceptable for an application service. Service (container) migration that follows the handover of end-user devices retains the response time. Service migration following the mass movement of people in the same geographic area and at the same time due to an event (e.g., commuting) generates heavy bandwidth usage in the mobile backhaul network. Heavy usage by service migration reduces available bandwidth for ordinary application traffic in the network. Shaping the migration traffic limits the bandwidth usage while delaying service migration and increasing the response time of the container for the moving end-user device. Furthermore, targets of migration decisions increase (i.e., the system load) because delaying a migration process accumulates containers waiting for migration. In this paper, we propose a migration scheduling method to control bandwidth usage for migration in a network and ensure timely processing of service migration. Simulations that compare the proposal with state-of-the-art methods show that the proposal always suppresses the bandwidth usage under the predetermined threshold. The method reduced the number of containers exceeding the acceptable response time up to 40% of the compared state-of-the-art methods. Furthermore, the proposed method minimized the targets of migration decisions.

  • Disaggregated Accelerator Management System for Cloud Data Centers

    Ryousei TAKANO  Kuniyasu SUZAKI  

     
    LETTER-Software System

      Pubricized:
    2020/12/07
      Vol:
    E104-D No:3
      Page(s):
    465-468

    A conventional data center that consists of monolithic-servers is confronted with limitations including lack of operational flexibility, low resource utilization, low maintainability, etc. Resource disaggregation is a promising solution to address the above issues. We propose a concept of disaggregated cloud data center architecture called Flow-in-Cloud (FiC) that enables an existing cluster computer system to expand an accelerator pool through a high-speed network. FlowOS-RM manages the entire pool resources, and deploys a user job on a dynamically constructed slice according to a user request. This slice consists of compute nodes and accelerators where each accelerator is attached to the corresponding compute node. This paper demonstrates the feasibility of FiC in a proof of concept experiment running a distributed deep learning application on the prototype system. The result successfully warrants the applicability of the proposed system.

  • Empirical Study of Low-Latency Network Model with Orchestrator in MEC Open Access

    Krittin INTHARAWIJITR  Katsuyoshi IIDA  Hiroyuki KOGA  Katsunori YAMAOKA  

     
    PAPER-Network

      Pubricized:
    2020/09/01
      Vol:
    E104-B No:3
      Page(s):
    229-239

    The Internet of Things (IoT) with its support for cyber-physical systems (CPS) will provide many latency-sensitive services that require very fast responses from network services. Mobile edge computing (MEC), one of the distributed computing models, is a promising component of the low-latency network architecture. In network architectures with MEC, mobile devices will offload heavy computing tasks to edge servers. There exist numbers of researches about low-latency network architecture with MEC. However, none of the existing researches simultaneously satisfy the followings: (1) guarantee the latency of computing tasks and (2) implement a real system. In this paper, we designed and implemented an MEC based network architecture that guarantees the latency of offloading tasks. More specifically, we first estimate the total latency including computing and communication ones at the centralized node called orchestrator. If the estimated value exceeds the latency requirement, the task will be rejected. We then evaluated its performance in terms of the blocking probability of the tasks. To analyze the results, we compared the performance between obtained from experiments and simulations. Based on the comparisons, we clarified that the computing latency estimation accuracy is a significant factor for this system.

  • Research on Contact Performance of Aviation Electrical Connector under Atmospheric Turbulence

    Yanyan LUO  Guoping WANG  Ming CAI  Le ZHANG  Zhaopan ZHANG  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2020/09/07
      Vol:
    E104-C No:3
      Page(s):
    112-120

    Electrical connectors are the basic components of the electric system in automobiles, aircrafts and ships to realize the current and electrical signal transmission. In the aviation electrical system, the electrical connectors are indispensable supporting devices accessories, which play important roles in connecting electrical system, monitoring and controlling equipment, and provide a guarantee for the reliable transmission of electrical signals between the aviation equipment and system. Whether aviation electrical connectors work reliably directly affects the safety and reliability of the entire aircraft aviation system. The random vibration of aircraft caused by turbulence during flight is one of the main factors affecting the contact performance of the electrical connectors. In this paper, the contacts of the circular four-slot three-pin electrical connectors were chosen as the research specimens. The theoretical model of the contact force for contacts of electrical connectors was established. The test method for contact force measurement was determined. According to the test scheme, the detecting device for the contact force and contact resistance of the electrical connectors was designed, and the turbulence test of the electrical connectors was carried out. Through the analysis of the test data, the influence rule of the turbulence degree, flight speed and flight height on the contact force and contact resistance of the aviation electrical connectors was obtained.

  • On the Separating Redundancy of Ternary Golay Codes

    Haiyang LIU  Lianrong MA  Hao ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2020/09/17
      Vol:
    E104-A No:3
      Page(s):
    650-655

    Let G11 (resp., G12) be the ternary Golay code of length 11 (resp., 12). In this letter, we investigate the separating redundancies of G11 and G12. In particular, we determine the values of sl(G11) for l = 1, 3, 4 and sl(G12) for l = 1, 4, 5, where sl(G11) (resp., sl(G12)) is the l-th separating redundancy of G11 (resp., G12). We also provide lower and upper bounds on s2(G11), s2(G12), and s3(G12).

  • Benchmarking Modern Edge Devices for AI Applications

    Pilsung KANG  Jongmin JO  

     
    PAPER-Computer System

      Pubricized:
    2020/12/08
      Vol:
    E104-D No:3
      Page(s):
    394-403

    AI (artificial intelligence) has grown at an overwhelming speed for the last decade, to the extent that it has become one of the mainstream tools that drive the advancements in science and technology. Meanwhile, the paradigm of edge computing has emerged as one of the foremost areas in which applications using the AI technology are being most actively researched, due to its potential benefits and impact on today's widespread networked computing environments. In this paper, we evaluate two major entry-level offerings in the state-of-the-art edge device technology, which highlight increased computing power and specialized hardware support for AI applications. We perform a set of deep learning benchmarks on the devices to measure their performance. By comparing the performance with other GPU (graphics processing unit) accelerated systems in different platforms, we assess the computational capability of the modern edge devices featuring a significant amount of hardware parallelism.

  • Temperature-Robust 0.48-V FD-SOI Intermittent Startup Circuit with 300-nA Quiescent Current for Batteryless Wireless Sensor Capable of 1-μA Energy Harvesting Sources

    Minoru SUDO  Fumiyasu UTSUNOMIYA  Ami TANAKA  Takakuni DOUSEKI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    506-515

    A temperature-variation-tolerant intermittent startup circuit (ISC) that suppresses quiescent current to 300nA at 0.48V was developed. The ISC is a key circuit for a batteryless wireless sensor that can detect a 1μA generation current of energy harvesting sources from the intervals of wireless signals. The ISC consists of an ultralow-voltage detector composed of a depletion-type MOSFET and low-Vth MOSFETs, a Dickson-type gate-boosted charge pump circuit, and a power-switch control circuit. The detector consists of a voltage reference comparator and a feedback-controlled latch circuit for a hysteresis function. The voltage reference comparator, which has a common source stage with a folded constant-current-source load composed of a depletion-type nMOSFET, makes it possible to reduce the temperature dependency of the detection voltage, while suppressing the quiescent current to 300nA at 0.48V. The ISC fabricated with fully-depleted silicon-on-insulator (FD-SOI) CMOS technology also suppresses the variation of the quiescent current. To verify the effectiveness of the circuit, the ISC was fabricated in a 0.8-μm triple-Vth FD-SOI CMOS process. An experiment on the fabricated system, the ISC boosts the input voltage of 0.48V to 2.4V while suppressing the quiescent current to less than 300nA at 0.48V. The measured temperature coefficient of the detection voltage was ±50ppm/°C. The fluctuation of the quiescent current was 250nA ± 90nA in the temperature range from 0°C to 40°C. An intermittent energy harvesting sensor with the ISC was also fabricated. The sensor could detect a generation current of 1μA at EH sources within an accuracy of ±15% in the temperature range from 0°C to 40°C. It was also successfully applied to a self-powered wireless plant-monitoring sensor system.

  • A Novel Approach to Address External Validity Issues in Fault Prediction Using Bandit Algorithms

    Teruki HAYAKAWA  Masateru TSUNODA  Koji TODA  Keitaro NAKASAI  Amjed TAHIR  Kwabena Ebo BENNIN  Akito MONDEN  Kenichi MATSUMOTO  

     
    LETTER-Software Engineering

      Pubricized:
    2020/10/30
      Vol:
    E104-D No:2
      Page(s):
    327-331

    Various software fault prediction models have been proposed in the past twenty years. Many studies have compared and evaluated existing prediction approaches in order to identify the most effective ones. However, in most cases, such models and techniques provide varying results, and their outcomes do not result in best possible performance across different datasets. This is mainly due to the diverse nature of software development projects, and therefore, there is a risk that the selected models lead to inconsistent results across multiple datasets. In this work, we propose the use of bandit algorithms in cases where the accuracy of the models are inconsistent across multiple datasets. In the experiment discussed in this work, we used four conventional prediction models, tested on three different dataset, and then selected the best possible model dynamically by applying bandit algorithms. We then compared our results with those obtained using majority voting. As a result, Epsilon-greedy with ϵ=0.3 showed the best or second-best prediction performance compared with using only one prediction model and majority voting. Our results showed that bandit algorithms can provide promising outcomes when used in fault prediction.

  • A Comparison Study on Camera-Based Pointing Techniques for Handheld Displays Open Access

    Liang CHEN  Dongyi CHEN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2020/08/04
      Vol:
    E104-C No:2
      Page(s):
    73-80

    Input devices based on direct touch have replaced traditional ones and become the mainstream interactive technology for handheld devices. Although direct touch interaction proves to be easy to use, its problems, e.g. the occlusion problem and the fat finger problem, lower user experience. Camera-based mobile interaction is one of the solutions to overcome the problems. There are two typical interaction styles to generate camera-based pointing interaction for handheld devices: move the device or move an object before the camera. In the first interaction style, there are two approaches to move a cursor's position across the handheld display: move it towards the same direction or the opposite direction which the device moves to. In this paper, the results of a comparison research, which compared the pointing performances of three camera-based pointing techniques, are presented. All pointing techniques utilized input from the rear-facing camera. The results indicate that the interaction style of moving a finger before the camera outperforms the other one in efficiency, accuracy, and throughput. The results also indicate that within the interaction style of moving the device, the cursor positioning style of moving the cursor to the opposite direction is slightly better than the other one in efficiency and throughput. Based on the findings, we suggest giving priority to the interaction style of moving a finger when deploying camera-based pointing techniques on handheld devices. Given that the interaction style of moving the device supports one-handed manipulation, it also worth deploying when one-handed interaction is needed. According to the results, the cursor positioning style of moving the cursor towards the opposite direction which the device moves to may be a better choice.

  • SEM Image Quality Assessment Based on Texture Inpainting

    Zhaolin LU  Ziyan ZHANG  Yi WANG  Liang DONG  Song LIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/10/30
      Vol:
    E104-D No:2
      Page(s):
    341-345

    This letter presents an image quality assessment (IQA) metric for scanning electron microscopy (SEM) images based on texture inpainting. Inspired by the observation that the texture information of SEM images is quite sensitive to distortions, a texture inpainting network is first trained to extract texture features. Then the weights of the trained texture inpainting network are transferred to the IQA network to help it learn an effective texture representation of the distorted image. Finally, supervised fine-tuning is conducted on the IQA network to predict the image quality score. Experimental results on the SEM image quality dataset demonstrate the advantages of the presented method.

  • Low Profile High-Efficiency Transmitarray Antenna Based on Hybrid Frequency Selective Surface

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/17
      Vol:
    E104-B No:1
      Page(s):
    49-54

    This paper presents a low profile high-efficiency transmitarray (TA) antenna based on a hybrid frequency selective surface (FSS). The hybrid FSS consists of two types of unit cells that have different incident angles and TE/TM polarization. This design minimizes the performance degradation caused by the oblique incident angle when designing a low profile TA antenna. In addition, the set of transmission phases to minimize transmission loss is selected by employing the optimal output phase reference. To verify its feasibility, a low profile TA (focal length/diameter of FSS =0.24) antenna that employs a unit patch antenna with a low gain and wide beamwidth as a feed antenna without an additional structure is designed. The simulated and measured results are in good agreement. In particular, the high simulated and measured aperture efficiencies of 42.7% and 41.9%, respectively, are obtained at 10GHz, respectively.

  • Mitigation of Flash Crowd in Web Services By Providing Feedback Information to Users

    Harumasa TADA  Masayuki MURATA  Masaki AIDA  

     
    PAPER

      Pubricized:
    2020/09/18
      Vol:
    E104-D No:1
      Page(s):
    63-75

    The term “flash crowd” describes a situation in which a large number of users access a Web service simultaneously. Flash crowds, in particular, constitute a critical problem in e-commerce applications because of the potential for enormous economic damage as well as difficulty in management. Flash crowds can become more serious depending on users' behavior. When a flash crowd occurs, the delay in server response may cause users to retransmit their requests, thereby adding to the server load. In the present paper, we propose to use the psychological factors of the users for flash crowd mitigation. We aim to analyze changes in the user behavior by presenting feedback information. To evaluate the proposed method, we performed subject experiments and stress tests. Subject experiments showed that, by providing feedback information, the average number of request retransmissions decreased from 1.33 to 0.09, and the subjects that abandoned the service decreased from 81% to 0%. This confirmed that feedback information is effective in influencing user behavior in terms of abandonment and retransmission of requests. Stress tests showed that the average number of retransmissions decreased by 41%, and the proportion of abandonments decreased by 30%. These results revealed that the presentation of feedback information could mitigate the damage caused by flash crowds in real websites, although the effect is limited. The proposed method can be used in conjunction with conventional methods to handle flash crowds.

  • Efficient Conformal Retrodirective Metagrating Operating Simultaneously at Multiple Azimuthal Angles

    The Viet HOANG  Jeong-Hae LEE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    73-79

    This paper presents a conformal retrodirective metagrating with multi-azimuthal-angle operating ability. First, a flat metagrating composed of a periodic array of single rectangular patch elements, two-layer stacked substrates, and a ground plane is implemented to achieve one-directional retroreflection at a specific angle. The elevation angle of the retroreflection is manipulated by precisely tuning the value of the period. To control the energy coupling to the retrodirective mode, the dimensions of the length and width of the rectangular patch are investigated under the effect of changing the substrate thickness. Three values of the length, width, and thickness are then chosen to obtain a high retroreflection power efficiency. Next, to create a conformal design operating simultaneously at multiple azimuthal angles, the rectangular patch array using a flexible ultra-thin guiding layer is conformed to a dielectric cylindrical substrate backed by a perfect electric conductor ground plane. Furthermore, to further optimize the retroreflection efficiency, two circular metallic plates are added at the two ends of the cylindrical substrate to eliminate the specular reflection inside the space of the cylinder. The measured radar cross-section shows a power efficiency of the retrodirective metagrating of approximately 91% and 93% for 30° retrodirected elevation angle at the azimuthal angles of 0° and 90°, respectively, at 5.8GHz.

  • IND-CCA1 Secure FHE on Non-Associative Ring

    Masahiro YAGISAWA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2020/07/08
      Vol:
    E104-A No:1
      Page(s):
    275-282

    A fully homomorphic encryption (FHE) would be the important cryptosystem as the basic scheme for the cloud computing. Since Gentry discovered in 2009 the first fully homomorphic encryption scheme, some fully homomorphic encryption schemes were proposed. In the systems proposed until now the bootstrapping process is the main bottleneck and the large complexity for computing the ciphertext is required. In 2011 Zvika Brakerski et al. proposed a leveled FHE without bootstrapping. But circuit of arbitrary level cannot be evaluated in their scheme while in our scheme circuit of any level can be evaluated. The existence of an efficient fully homomorphic cryptosystem would have great practical implications in the outsourcing of private computations, for instance, in the field of the cloud computing. In this paper, IND-CCA1secure FHE based on the difficulty of prime factorization is proposed which does not need the bootstrapping and it is thought that our scheme is more efficient than the previous schemes. In particular the computational overhead for homomorphic evaluation is O(1).

221-240hit(3578hit)