The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] 802.11a(43hit)

1-20hit(43hit)

  • Handover Experiment of 60-GHz-Band Wireless LAN in over 200-km/h High-Speed Mobility Environment

    Tatsuhiko IWAKUNI  Daisei UCHIDA  Takuto ARAI  Shuki WAI  Naoki KITA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    384-391

    High-frequency wireless communication is drawing attention because of its potential to actualize huge transmission capacity in the next generation wireless system. The use of high-frequency bands requires dense deployment of access points to compensate for significant distance attenuation and diffraction loss. Dense deployment of access points in a mobility environment triggers an increase in the frequency of handover because the number of candidate access points increases. Therefore, simple handover schemes are needed. High-frequency wireless systems enable station position to be determined using their wideband and highly directional communication signals. Thus, simple handover based on position information estimated using the communication signal is possible. Interruptions caused by handover are also a huge barrier to actualizing stable high-frequency wireless communications. This paper proposes a seamless handover scheme using multiple radio units. This paper evaluates the combination of simple handover and the proposed scheme based on experiments using a formula racing car representing the fastest high-speed mobility environment. Experimental results show that seamless handover and high-speed wireless transmission over 200Mbps are achieved over a 400-m area even at station velocities of greater than 200km/h.

  • An Efficient ARQ Scheme under IEEE 802.11ac Error Channel

    Xueyan LI  Peng CHENG  Bin WU  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2021/10/04
      Vol:
    E105-A No:4
      Page(s):
    694-703

    In this paper, an automatic retransmission request (ARQ) scheme for IEEE 802.11ac is presented, which can solve the problem of severe packet loss and greatly improve the performance in error-prone environments. The proposed solution only requires to be deployed on the sender and is compatible with the 802.11 protocol. The algorithm utilizes the basic strategy of sliding retransmission and then adds the method of copying frames. The media access control (MAC) protocol data unit (MPDU) lost in the transmission and the newly added data frame brought by the sliding window change are replicated. The scheme retransmits the duplicated aggregated packet and further improves the throughput by increasing the probability of successful transmission of sub-frames. Besides, we also establish a mathematical model to analyze the performance of the proposed scheme. We introduce the concept of average aggregated sub-frames and express the sliding retransmission strategy as the aggregated transmission of average aggregated sub-frames, thereby simplifying the model and effectively analyzing the theoretical throughput of the proposed algorithm. The simulation results of Network simulator 3 (NS-3) simulation results demonstrate that the performance of the proposed algorithm is better than the traditional sliding retransmission ARQ algorithm in error-prone channels with a higher physical layer rate.

  • Centralized Control Method of Multi-Radio and Terminal Connection for 802.11 Wireless LAN Mixed Environment

    Toshiro NAKAHIRA  Koichi ISHIHARA  Motoharu SASAKI  Hirantha ABEYSEKERA  Tomoki MURAKAMI  Takatsune MORIYAMA  Yasushi TAKATORI  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-B No:2
      Page(s):
    186-195

    In this paper, we propose a novel centralized control method to handle multi-radio and terminal connections in an 802.11ax wireless LAN (802.11ax) mixed environment. The proposed control method can improve the throughput by applying 802.11ax Spatial Reuse in an environment hosting different terminal standards and mixed terminal communication quality. We evaluate the proposed control method by computer simulations assuming environments with mixed terminal standards, mixed communication quality, and both.

  • Stochastic Geometry Analysis of Inversely Proportional Carrier Sense Threshold and Transmission Power for WLAN Spatial Reuse Open Access

    Koji YAMAMOTO  Takayuki NISHIO  Masahiro MORIKURA  Hirantha ABEYSEKERA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/03/31
      Vol:
    E104-B No:10
      Page(s):
    1345-1353

    In this paper, a stochasic geometry analysis of the inversely proportional setting (IPS) of carrier sense threshold (CST) and transmission power for densely deployed wireless local area networks (WLANs) is presented. In densely deployed WLANs, CST adjustment is a crucial technology to enhance spatial reuse, but it can starve surrounding transmitters due to an asymmetric carrier sensing relationship. In order for the carrier sensing relationship to be symmetric, the IPS of the CST and transmission power is a promising approach, i.e., each transmitter jointly adjusts its CST and transmission power in order for their product to be equal to those of others. This setting is used for spatial reuse in IEEE 802.11ax. By assuming that the set of potential transmitters follows a Poisson point process, the impact of the IPS on throughput is formulated based on stochastic geometry in two scenarios: an adjustment at a single transmitter and an identical adjustment at all transmitters. The asymptotic expression of the throughput in dense WLANs is derived and an explicit solution of the optimal CST is achieved as a function of the number of neighboring potential transmitters and signal-to-interference power ratio using approximations. This solution was confirmed through numerical results, where the explicit solution achieved throughput penalties of less than 8% relative to the numerically evaluated optimal solution.

  • Towards mmWave V2X in 5G and Beyond to Support Automated Driving Open Access

    Kei SAKAGUCHI  Ryuichi FUKATSU  Tao YU  Eisuke FUKUDA  Kim MAHLER  Robert HEATH  Takeo FUJII  Kazuaki TAKAHASHI  Alexey KHORYAEV  Satoshi NAGATA  Takayuki SHIMIZU  

     
    INVITED SURVEY PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/11/26
      Vol:
    E104-B No:6
      Page(s):
    587-603

    Millimeter wave provides high data rates for Vehicle-to-Everything (V2X) communications. This paper motivates millimeter wave to support automated driving and begins by explaining V2X use cases that support automated driving with references to several standardization bodies. The paper gives a classification of existing V2X standards: IEEE802.11p and LTE V2X, along with the status of their commercial deployment. Then, the paper provides a detailed assessment on how millimeter wave V2X enables the use case of cooperative perception. The explanations provide detailed rate calculations for this use case and show that millimeter wave is the only technology able to achieve the requirements. Furthermore, specific challenges related to millimeter wave for V2X are described, including coverage enhancement and beam alignment. The paper concludes with some results from three studies, i.e. IEEE802.11ad (WiGig) based V2X, extension of 5G NR (New Radio) toward mmWave V2X, and prototypes of intelligent street with mmWave V2X.

  • Uplink Frame Transmission with Functions of Adaptive Triggering and Resource Allocation of OFDMA in Interfering IEEE 802.11ax Wireless LANs

    Ryoichi TAKAHASHI  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/12/09
      Vol:
    E104-B No:6
      Page(s):
    664-674

    In recent years, wireless LANs (WLANs) are closely deployed which means they interfere with each other. Mobile stations (MSs) like smart phones that connect to such WLANs are also increasing. In such interfering environments, radio interference frequency depends on MS position. In addition, as MSs and their applications become diverse, frame generation rates from MSs are also becoming various. Thus, sufficient frame transmission opportunities should be assigned to MSs regardless of their radio interference frequencies and frame generation rates. One key technology to deal with this issue is uplink orthogonal frequency division multiple access (OFDMA) transmission introduced in IEEE 802.11ax. However, existing works do not consider the differences of the interference frequencies and frame generation rates among MSs in an integrated manner. This paper proposes an uplink frame transmission method for interfering WLAN environments that effectively uses the OFDMA transmission to assign enough transmission opportunities to MSs regardless of their own interference frequencies and frame generation rates, while efficiently using the channel resource. Considering the combined problem, this proposed method allocates resource units (RUs), created by dividing the channel, to MSs. In addition, based on a mathematical analysis of required frame transmission duration, the proposed method flexibly selects the OFDMA transmission or conventional frame transmission with CSMA/CA, which is also not considered in the existing works.

  • Coordinated Scheduling of 802.11ax Wireless LAN Systems Using Hierarchical Clustering

    Kenichi KAWAMURA  Akiyoshi INOKI  Shouta NAKAYAMA  Keisuke WAKAO  Yasushi TAKATORI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    80-87

    A method is presented for increasing wireless LAN (WLAN) capacity in high-density environments with IEEE 802.11ax systems. We propose using coordinated scheduling of trigger frames based on our mobile cooperative control concept. High-density WLAN systems are managed by a management server, which gathers wireless environmental information from user equipment through cellular access. Hierarchical clustering of basic service sets is used to form synchronized clusters to reduce interference and increase throughput of high-density WLAN systems based on mobile cooperative control. This method increases uplink capacity by up to 19.4% and by up to 11.3% in total when WLAN access points are deployed close together. This control method is potentially effective for IEEE 802.11ax WLAN systems utilized as 5G mobile network components.

  • An Actual Stadium Verification of WLAN Using a Distributed Smart Antenna System (D-SAS) Open Access

    Tomoki MURAKAMI  Koichi ISHIHARA  Hirantha ABEYSEKERA  Yasushi TAKATORI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    109-117

    Dense deployments of wireless local area network (WLAN) access points (APs) are accelerating to accommodate the massive wireless traffic from various mobile devices. The AP densification improves the received power at mobile devices; however, total throughput in a target area is saturated by inter-cell interference (ICI) because of the limited number of frequency channels available for WLANs. To substantially mitigate ICI, we developed and described a distributed smart antenna system (D-SAS) proposed for dense WLAN AP deployment in this paper. We also describe a system configuration based on our D-SAS approach. In this approach, the distributed antennas externally attached to each AP can be switched so as to make the transmit power match the mobile device's conditions (received power and packet type). The gains obtained by the antenna switching effectively minimize the transmission power required of each AP. We also describe experimental measurements taken in a stadium using a system prototype, the results show that D-SAS offers double the total throughput attained by a centralized smart antenna system (C-SAS).

  • A Node-Grouping Based Spatial Spectrum Reuse Method for WLANs in Dense Residential Scenarios

    Jin LIU  Masahide HATANAKA  Takao ONOYE  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:7
      Page(s):
    917-927

    Lately, an increasing number of wireless local area network (WLAN) access points (APs) are deployed to serve an ever increasing number of mobile stations (STAs). Due to the limited frequency spectrum, more and more AP and STA nodes try to access the same channel. Spatial spectrum reuse is promoted by the IEEE 802.11ax task group through dynamic sensitivity control (DSC), which permits cochannel operation when the received signal power at the prospective transmitting node (PTN) is lower than an adjusted carrier sensing threshold (CST). Previously-proposed DSC approaches typically calculate the CST without node grouping by using a margin parameter that remains fixed during operation. Setting the margin has previously been done heuristically. Finding a suitable value has remained an open problem. Therefore, herein, we propose a DSC approach that employs a node grouping method for adaptive calculation of the CST at the PTN with a channel-aware and margin-free formula. Numerical simulations for dense residential WLAN scenario reveal total throughput and Jain's fairness index gains of 8.4% and 7.6%, respectively, vs. no DSC (as in WLANs deployed to present).

  • A 0.4-1.2GHz Reconfigurable CMOS Power Amplifier for 802.11ah/af Applications

    Jaeyong KO  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E102-C No:1
      Page(s):
    91-94

    A reconfigurable broadband linear power amplifier (PA) for long-range WLAN applications fabricated in a 180nm RF CMOS process is presented here. The proposed reconfigurable in/output matching network provides the PA with broadband capability at the two center frequencies of 0.5GHz and 0.85GHz. The output matching network is realized by a switchable transformer which shows maximum peak passive efficiencies of 65.03% and 73.45% at 0.45GHz and 0.725GHz, respectively. With continuous wave sources, a 1-dB bandwidth (BW1-dB) according to saturated output power is 0.4-1.2GHz, where it shows a minimum output power with a power added efficiency (PAE) of 25.62dBm at 19.65%. Using an adaptive power cell configuration at the common gate transistor, the measured PA under LTE 16-QAM 20MHz (40MHz) signals shows an average output power with a PAE exceeding 20.22 (20.15) dBm with 7.42 (7.35)% at an ACLRE-UTRA of -30dBc, within the BW1-dB.

  • Restricted Access Window Based Hidden Node Problem Mitigating Algorithm in IEEE 802.11ah Networks

    Ruoyu WANG  Min LIN  

     
    PAPER-Network

      Pubricized:
    2018/03/29
      Vol:
    E101-B No:10
      Page(s):
    2162-2171

    IEEE 802.11ah is a specification being developed for sub-1GHz license-exempt operation and is intended to provide Low Power Wide Area (LPWA) communication services and support Internet of Things (IoT) features such as large-scale networks and extended transmission range. However, these features also make the 802.11ah networks highly susceptible to channel contention and hidden node problem (HNP). To address the problems, the 11ah Task Group proposed a Restricted Access Window (RAW) mechanism. It shows outstanding performance in alleviating channel contention, but its effect on solving HNP is unsatisfactory. In this paper, we propose a simple and effective hidden node grouping algorithm (HNGA) based on IEEE 802.11ah RAW. The algorithm collects hidden node information by taking advantage of the 802.11 association process and then performs two-stage uniform grouping to prevent hidden node collisions (HNCs). Performance of the proposed algorithm is evaluated in comparison with other existing schemes in a hidden node situation. The results show that our proposed algorithm eliminates most of hidden node pairs inside a RAW group with low overhead penalty, thereby improving the performance of the network. Moreover, the algorithm is immune to HNCs caused by cross slot boundary transmissions.

  • QoE Enhancement of Audio-Video Reliable Groupcast with IEEE 802.11aa

    Toshiro NUNOME  Takuya KOMATSU  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1645-1652

    This paper enhances the QoE of audio and video multicast transmission over a wireless LAN by means of reliable groupcast schemes. We use GCR (GroupCast with Retries) Unsolicited Retry and GCR Block ACK as reliable groupcast schemes; they are standardized by IEEE 802.11aa. We assume that a wireless access point transmits audio and video streams to several terminals connected to the access point by groupcast. We compare three schemes: Groupcast with EDCA (Enhanced Distributed Channel Access), GCR Unsolicited Retry and GCR Block ACK. We perform computer simulations under various network conditions to assess application-level QoS and evaluate QoE by a subjective experiment. As a result, we find that the most effective scheme depends on network conditions.

  • A Novel Low-Overhead Channel Sounding Protocol for Downlink Multi-User MIMO in IEEE 802.11ax WLAN Open Access

    Toshihisa NABETANI  Narendar MADHAVAN  Hiroki MORI  Tsuguhide AOKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/09/15
      Vol:
    E101-B No:3
      Page(s):
    924-932

    The next generation wireless LAN standard IEEE 802.11ax aims to provide improved throughput performance in dense environments. We have proposed an efficient channel sounding mechanism for DL-MU-MIMO that has been adopted as a new sounding protocol in the 802.11ax standard. In this paper, we evaluate the overhead reduction in the 802.11ax sounding protocol compared with the 802.11ac sounding protocol. Sounding is frequently performed to obtain accurate channel information from the associated stations in order to improve overall system throughput. However, there is a trade-off between accurate channel information and the overhead incurred due to frequent sounding. Therefore, the sounding interval is an important factor that determines system throughput in DL-MU-MIMO transmission. We also evaluate the effect of sounding interval on the system throughput performance using both sounding protocols and provide a comparative analysis of the performance improvement.

  • A New Block Association Scheme for IEEE 802.11ah

    Pranesh STHAPIT  Jae-Young PYUN  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    648-656

    IEEE 802.11ah is a new wireless standard for large-scale wireless connectivity in IoT and M2M applications. One of the major requirements placed on IEEE 802.11ah is the energy-efficient communication of several thousand stations with a single access point. This is especially difficult to achieve during network initialization, because the several thousand stations must rely on the rudimentary approach of random channel access, and the inevitable increase in channel access contention yields a long association delay. IEEE 802.11ah has introduced an authentication control mechanism that classifies stations into groups, and only a small number of stations in a group are allowed to access the medium at a time. Although the grouping strategy provides fair channel access to a large number of stations, the presence of several thousand stations and limitation that only a group can use the channel at a time, causes the association time to remain excessive. In this paper, we propose a novel block association method that enables simultaneous association of all groups. Our experiments verify that our block association method decreases the total association time by many folds.

  • Centralized Contention Based MAC for OFDMA WLAN

    Gunhee LEE  Cheeha KIM  

     
    LETTER-Information Network

      Pubricized:
    2017/06/06
      Vol:
    E100-D No:9
      Page(s):
    2219-2223

    The IEEE 802.11 wireless local area network (WLAN) is the most widely deployed communication standard in the world. Currently, the IEEE 802.11ax draft standard is one of the most advanced and promising among future wireless network standards. However, the suggested uplink-OFDMA (UL-OFDMA) random access method, based on trigger frame-random access (TF-R) from task group ax (TGax), does not yet show satisfying system performance. To enhance the UL-OFDMA capability of the IEEE 802.11ax draft standard, we propose a centralized contention-based MAC (CC-MAC) and describe its detailed operation. In this paper, we analyze the performance of CC-MAC by solving the Markov chain model and evaluating BSS throughput compared to other methods, such as DCF and TF-R, by computer simulation. Our results show that CC-MAC is a scalable and efficient scheme for improving the system performance in a UL-OFDMA random access situation in IEEE 802.11ax.

  • Station Grouping Strategy for Minimizing Association Delay in IEEE 802.11ah

    Pranesh STHAPIT  Jae-Young PYUN  

     
    PAPER-Network

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1419-1427

    IEEE 802.11ah is an emerging wireless LAN standard in the sub-1-GHz license-exempt bands for cost-effective and range-extended communication. One of the most challenging issues that need to be overcome in relation to IEEE 802.11ah is to ensure that thousands of stations are able to associate efficiently with a single access point. During network initialization, several thousand stations try to associate with the access point, leading to heavy channel contention and long association delay. Therefore, IEEE 802.11ah has introduced an authentication control mechanism that classifies stations into groups and only a small number of stations in a group are allowed to access the medium in a beacon interval. This grouping strategy provides fair channel access to a large number of stations. However, the approach to grouping the stations and determining the best group size is undefined in the draft of IEEE 802.11ah. In this paper, we first model the authentication/association in IEEE 802.11ah. Our analysis shows that there exists the best group size that results in minimal association delay. Consequently, the analytical model is extended to determine the best group size. Finally, an enhanced authentication control algorithm, which utilizes the best group size to provide the minimum association delay, is proposed. The numerical and the simulation results we obtained with the proposed method demonstrate that our method succeeds in minimizing the association delay.

  • Design of a High-Throughput Sliding Block Viterbi Decoder for IEEE 802.11ac WLAN Systems

    Kai-Feng XIA  Bin WU  Tao XIONG  Cheng-Ying CHEN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1606-1614

    This paper presents a high-throughput sliding block Viterbi decoder for IEEE 802.11ac systems. A 64-state bidirectional sliding block Viterbi method is proposed to meet the speed requirement of the system. The decoder throughput goes up to 640Mbps, which can be further increased by adding the block parallelism. Moreover, a modified add-compare-select (ACS) unit is designed to enhance the working frequency. The modified ACS unit obtains nearly 26% speed-up, compared to the conventional ACS unit. However, the area overhead and power dissipation are almost the same. The decoder is designed in a SMIC 0.13µm technology, and it occupies 1.96mm2 core area and 105mW power consumption with an energy efficiency of 0.1641nJ/bit with a 1.2V voltage supply.

  • Design and Experimental Evaluation of 60GHz Multiuser Gigabit/s Small Cell Radio Access Based on IEEE 802.11ad/WiGig

    Koji TAKINAMI  Naganori SHIRAKATA  Masashi KOBAYASHI  Tomoya URUSHIHARA  Hiroshi TAKAHASHI  Hiroyuki MOTOZUKA  Masataka IRIE  Masayuki SHIMIZU  Yuji TOMISAWA  Kazuaki TAKAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1075-1085

    This paper presents the design and experimental evaluation of 60GHz small cell radio access based on IEEE 802.11ad/WiGig. The access point (AP) prototype used combines three RF modules with beamforming technology to provide 360° area coverage. In order to compensate for limited communication distance, multiple APs are employed to achieve wide area coverage. A handover algorithm suitable for IEEE 802.11ad/WiGig is employed to achieve flexible control of the cell coverage of each AP. As a proof of concept, a prototype system is set up at Narita International Airport and the capability of multiuser Gb/s wireless access is successfully demonstrated. In addition, the system behavior under stringent conditions is evaluated by load testing and throughput degradation due to co-channel and inter-channel interference is investigated.

  • Adaptive Interference-Aware Receiver for Multiuser MIMO Downlink Transmission in IEEE 802.11ac Wireless LAN Systems

    Minjoon KIM  Yunho JUNG  Jaeseok KIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1884-1893

    This paper presents an adaptive interference-aware receiver for multiuser multiple-input multiple-output (MU-MIMO) downlink systems in wireless local area network (WLAN) systems. The MU-MIMO downlink technique is one of the key techniques that are newly applied to WLAN systems in order to support a very high throughput. However, the simultaneous communication of several users causes inter-user interference (IUI), which adversely affects receivers. Therefore, in order to prevent IUI, a precoding technique is defined at the transmitter based on feedback from the receiver. Unfortunately, however, the receiver still suffers from interference, because the precoding technique is prone to practical errors from the feedback quantization and subcarrier grouping scheme. Whereas ordinary detection schemes are available to mitigate such interference, such schemes are unsuitable because of their low performance or high computational complexity. In this paper, we propose an switching algorithm based on the norm ratio between an effective channel matrix for the desired signal and that of the interfering signals. Simulation results based on the IEEE 802.11ac standard show that the proposed algorithm can achieve near-optimal performance with a 70% reduction in computational complexity.

  • A 60 GHz Hybrid Analog/Digital Beamforming Receiver with Interference Suppression for Multiuser Gigabit/s Radio Access

    Koji TAKINAMI  Hiroyuki MOTOZUKA  Tomoya URUSHIHARA  Masashi KOBAYASHI  Hiroshi TAKAHASHI  Masataka IRIE  Takenori SAKAMOTO  Yohei MORISHITA  Kenji MIYANAGA  Takayuki TSUKIZAWA  Noriaki SAITO  Naganori SHIRAKATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    856-865

    This paper presents a 60 GHz analog/digital beamforming receiver that effectively suppresses interference signals, targeting the IEEE 802.11ad/WiGig standard. Combining two-stream analog frontends with interference rejection digital signal processing, the analog beamforming steers the antenna beam to the desired direction while the digital beamforming provides gain suppression in the interference direction. A prototype has been built with 40 nm CMOS analog frontends as well as offline baseband digital signal processing. Measurements show a 3.1 dB EVM advantage over conventional two-stream diversity during a packet collision situation.

1-20hit(43hit)