The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ASE(2849hit)

221-240hit(2849hit)

  • A 28-GHz CMOS Vector-Summing Phase Shifter Featuring I/Q Imbalance Calibration Supporting 11.2Gb/s in 256QAM for 5G New Radio

    Jian PANG  Ryo KUBOZOE  Zheng LI  Masaru KAWABUCHI  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2019/08/19
      Vol:
    E103-C No:2
      Page(s):
    39-47

    Regarding the enlarged array size for the 5G new radio (NR) millimeter-wave phased-array transceivers, an improved phase tuning resolution will be required to support the accurate beam control. This paper introduces a CMOS implementation of an active vector-summing phase shifter. The proposed phase shifter realizes a 6-bit phase shifting with an active area of 0.32mm2. To minimize the gain variation during the phase tuning, a gain error compensation technique is proposed. After the compensation, the measured gain variation within the 5G NR band n257 is less than 0.9dB. The corresponding RMS gain error is less than 0.2dB. The measured RMS phase error from 26.5GHz to 29.5GHz is less than 1.2°. Gain-invariant, high-resolution phase tuning is realized by this work. Considering the error vector magnitude (EVM) performance, the proposed phase shifter supports a maximum data rate of 11.2Gb/s in 256QAM with a power consumption of 25.2mW.

  • Template-Based Monte-Carlo Test-Suite Generation for Large and Complex Simulink Models Open Access

    Takashi TOMITA  Daisuke ISHII  Toru MURAKAMI  Shigeki TAKEUCHI  Toshiaki AOKI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    451-461

    MATLAB/Simulink is the de facto standard tool for the model-based development (MBD) of control software for automotive systems. A Simulink model developed in MBD for real automotive systems involves complex computation as well as tens of thousands of blocks. In this paper, we focus on decision coverage (DC), condition coverage (CC) and modified condition/decision coverage (MC/DC) criteria, and propose a Monte-Carlo test suite generation method for large and complex Simulink models. In the method, a candidate test case is generated by assigning random values to the parameters of signal templates with specific waveforms. We try to find contributable candidates in a plausible and understandable search space, specified by a set of templates. We implemented the method as a tool, and our experimental evaluation showed that the tool was able to generate test suites for industrial implementation models with higher coverages and shorter execution times than Simulink Design Verifier. Additionally, the tool includes a fast coverage measurement engine, which demonstrated better performance than Simulink Coverage in our experiments.

  • Software Process Capability Self-Assessment Support System Based on Task and Work Product Characteristics: A Case Study of ISO/IEC 29110 Standard

    Apinporn METHAWACHANANONT  Marut BURANARACH  Pakaimart AMSURIYA  Sompol CHAIMONGKHON  Kamthorn KRAIRAKSA  Thepchai SUPNITHI  

     
    PAPER-Software Engineering

      Pubricized:
    2019/10/17
      Vol:
    E103-D No:2
      Page(s):
    339-347

    A key driver of software business growth in developing countries is the survival of software small and medium-sized enterprises (SMEs). Quality of products is a critical factor that can indicate the future of the business by building customer confidence. Software development agencies need to be aware of meeting international standards in software development process. In practice, consultants and assessors are usually employed as the primary solution, which can impact the budget in case of small businesses. Self-assessment tools for software development process can potentially reduce time and cost of formal assessment for software SMEs. However, the existing support methods and tools are largely insufficient in terms of process coverage and semi-automated evaluation. This paper proposes to apply a knowledge-based approach in development of a self-assessment and gap analysis support system for the ISO/IEC 29110 standard. The approach has an advantage that insights from domain experts and the standard are captured in the knowledge base in form of decision tables that can be flexibly managed. Our knowledge base is unique in that task lists and work products defined in the standard are broken down into task and work product characteristics, respectively. Their relation provides the links between Task List and Work Product which make users more understand and influence self-assessment. A prototype support system was developed to assess the level of software development capability of the agencies based on the ISO/IEC 29110 standard. A preliminary evaluation study showed that the system can improve performance of users who are inexperienced in applying ISO/IEC 29110 standard in terms of task coverage and user's time and effort compared to the traditional self-assessment method.

  • Mathematical Analysis of Phase Resetting Control Mechanism during Rhythmic Movements

    Kazuki NAKADA  Keiji MIURA  

     
    INVITED PAPER

      Vol:
    E103-A No:2
      Page(s):
    398-406

    Possible functional roles of the phase resetting control during rhythmic movements have been attracting much attention in the field of robotics. The phase resetting control is a control mechanism in which the phase shift of periodic motion is induced depending on the timing of a given perturbation, leading to dynamical stability such as a rapid transition from an unstable state to a stable state in rhythmic movements. A phase response curve (PRC) is used to quantitatively evaluate the phase shift in the phase resetting control. It has been demonstrated that an optimal PRC for bipedal walking becomes bimodal. The PRCs acquired by reinforcement learning in simulated biped walking are qualitatively consistent with measured results obtained from experiments. In this study, we considered how such characteristics are obtained from a mathematical point of view. First, we assumed a symmetric Bonhoeffer-Van der Pol oscillator and phase excitable element known as an active rotator as a model of the central pattern generator for controlling rhythmic movements. Second, we constructed feedback control systems by combining them with manipulators. Next, we numerically computed the PRCs of such systems and compared the resulting PRCs. Furthermore, we approximately calculated analytical solutions of the PRCs. Based on the results, we systematically investigated the parameter dependence of the analytical PRCs. Finally, we investigated the requirements for realizing an optimal PRC for the phase resetting control during rhythmic movements.

  • White-Box Implementation of the Identity-Based Signature Scheme in the IEEE P1363 Standard for Public Key Cryptography

    Yudi ZHANG  Debiao HE  Xinyi HUANG  Ding WANG  Kim-Kwang Raymond CHOO  Jing WANG  

     
    INVITED PAPER

      Pubricized:
    2019/09/27
      Vol:
    E103-D No:2
      Page(s):
    188-195

    Unlike black-box cryptography, an adversary in a white-box security model has full access to the implementation of the cryptographic algorithm. Thus, white-box implementation of cryptographic algorithms is more practical. Nevertheless, in recent years, there is no white-box implementation for public key cryptography. In this paper, we propose the first white-box implementation of the identity-based signature scheme in the IEEE P1363 standard. Our main idea is to hide the private key to multiple lookup tables, so that the private key cannot be leaked during the algorithm executed in the untrusted environment. We prove its security in both black-box and white-box models. We also evaluate the performance of our white-box implementations, in order to demonstrate utility for real-world applications.

  • Statistical Analysis of Phase-Only Correlation Functions Between Two Signals with Stochastic Phase-Spectra Following Bivariate Circular Probability Distributions

    Shunsuke YAMAKI  Ryo SUZUKI  Makoto YOSHIZAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E103-A No:2
      Page(s):
    478-485

    This paper proposes statistical analysis of phase-only correlation functions between two signals with stochastic phase-spectra following bivariate circular probability distributions based on directional statistics. We give general expressions for the expectation and variance of phase-only correlation functions in terms of joint characteristic functions of the bivariate circular probability density function. In particular, if we assume bivariate wrapped distributions for the phase-spectra, we obtain exactly the same results between in case of a bivariate linear distribution and its corresponding bivariate wrapped distribution.

  • Laser-Induced Controllable Instruction Replacement Fault Attack Open Access

    Junichi SAKAMOTO  Daisuke FUJIMOTO  Tsutomu MATSUMOTO  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    11-20

    To develop countermeasures against fault attacks, it is important to model an attacker's ability. The instruction skip model is a well-studied practical model for fault attacks on software. Contrastingly, few studies have investigated the instruction replacement model, which is a generalization of the instruction skip model, because replacing an instruction with a desired one is considered difficult. Some previous studies have reported successful instruction replacements; however, those studies concluded that such instruction replacements are not practical attacks because the outcomes of the replacements are uncontrollable. This paper proposes the concept of a controllable instruction replacement technique that uses the laser irradiation of flash memory. The feasibility of the proposed technique is demonstrated experimentally using a smartcard-type ARM SC100 microcontroller. Then, practical cryptosystem attacks that exploit the proposed technique are investigated. The targeted cryptosystems employ the AES with software-based anti-fault countermeasures. We demonstrate that an existing anti-instruction-skip countermeasure can be circumvented by replacing a critical instruction, e.g., a branch instruction to detect fault occurrence.

  • Expressive Attribute-Based Encryption with Constant-Size Ciphertexts from the Decisional Linear Assumption Open Access

    Katsuyuki TAKASHIMA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    74-106

    We propose a key-policy attribute-based encryption (KP-ABE) scheme with constant-size ciphertexts, whose almost tightly semi-adaptive security is proven under the decisional linear (DLIN) assumption in the standard model. The access structure is expressive, that is given by non-monotone span programs. It also has fast decryption, i.e., a decryption includes only a constant number of pairing operations. As an application of our KP-ABE construction, we also propose an efficient, fully secure attribute-based signatures with constant-size secret (signing) keys from the DLIN. For achieving the above results, we extend the sparse matrix technique on dual pairing vector spaces. In particular, several algebraic properties of an elaborately chosen sparse matrix group are applied to the dual system security proofs.

  • A Log-Based Testing Approach for Detecting Faults Caused by Incorrect Assumptions About the Environment

    Sooyong JEONG  Ajay Kumar JHA  Youngsul SHIN  Woo Jin LEE  

     
    LETTER-Software Engineering

      Pubricized:
    2019/10/04
      Vol:
    E103-D No:1
      Page(s):
    170-173

    Embedded software developers assume the behavior of the environment when specifications are not available. However, developers may assume the behavior incorrectly, which may result in critical faults in the system. Therefore, it is important to detect the faults caused by incorrect assumptions. In this letter, we propose a log-based testing approach to detect the faults. First, we create a UML behavioral model to represent the assumed behavior of the environment, which is then transformed into a state model. Next, we extract the actual behavior of the environment from a log, which is then incorporated in the state model, resulting in a state model that represents both assumed and actual behaviors. Existing testing techniques based on the state model can be used to generate test cases from our state model to detect faults.

  • Decentralized Attribute-Based Encryption and Signatures Open Access

    Tatsuaki OKAMOTO  Katsuyuki TAKASHIMA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    41-73

    This paper presents decentralized multi-authority attribute-based encryption and signature (DMA-ABE and DMA-ABS) schemes, in which no central authority exists and no global coordination is required except for the setting of a parameter for a prime order bilinear group and a hash function, which can be available from public documents, e.g., ISO and FIPS official documents. In the proposed DMA-ABE and DMA-ABS schemes, every process can be executed in a fully decentralized manner; any party can become an authority and issue a piece for a secret key to a user without interacting with any other party, and each user obtains a piece of his/her secret key from the associated authority without interacting with any other party. While enjoying such fully decentralized processes, the proposed schemes are still secure against collusion attacks, i.e., multiple pieces issued to a user by different authorities can form a collusion resistant secret key, composed of these pieces, of the user. The proposed ABE scheme is the first DMA-ABE for non-monotone relations (and more general relations), which is adaptively secure under the decisional linear (DLIN) assumption in the random oracle model. This paper also proposes the first DMA-ABS scheme for non-monotone relations (and more general relations), which is fully secure, adaptive-predicate unforgeable and perfect private, under the DLIN assumption in the random oracle model. DMA-ABS is a generalized notion of ring signatures. The efficiency of the proposed DMA-ABE and DMA-ABS schemes is comparable to those of the existing practical ABE and ABS schemes with comparable relations and security.

  • Generic Construction of Adaptively Secure Anonymous Key-Policy Attribute-Based Encryption from Public-Key Searchable Encryption

    Junichiro HAYATA  Masahito ISHIZAKA  Yusuke SAKAI  Goichiro HANAOKA  Kanta MATSUURA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    107-113

    Public-key encryption with keyword search (PEKS) is a cryptographic primitive that allows us to search for particular keywords over ciphertexts without recovering plaintexts. By using PEKS in cloud services, users can outsource their data in encrypted form without sacrificing search functionality. Concerning PEKS that can specify logical disjunctions and logical conjunctions as a search condition, it is known that such PEKS can be (generically) constructed from anonymous attribute-based encryption (ABE). However, it is not clear whether it is possible to construct this types of PEKS without using ABE which may require large computational/communication costs and strong mathematical assumptions. In this paper, we show that ABE is crucial for constructing PEKS with the above functionality. More specifically, we give a generic construction of anonymous key-policy ABE from PEKS whose search condition is specified by logical disjunctions and logical conjunctions. Our result implies such PEKS always requires large computational/communication costs and strong mathematical assumptions corresponding to those of ABE.

  • Surface Clutter Suppression with FDTD Recovery Signal for Microwave UWB Mammography Open Access

    Kazuki NORITAKE  Shouhei KIDERA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2019/07/17
      Vol:
    E103-C No:1
      Page(s):
    26-29

    Microwave mammography is a promising alternative to X-ray based imaging modalities, because of its small size, low cost, and cell-friendly exposure. More importantly, this modality enables the suppression of surface reflection clutter, which can be enhanced by introducing accurate surface shape estimations. However, near-field measurements can reduce the shape estimation accuracy, due to a mismatch between the reference and observed waveforms. To mitigate this problem, this study incorporates envelope-based shape estimation and finite-difference time-domain (FDTD)-based waveform correction with a fractional derivative adjustment. Numerical simulations based on realistic breast phantoms derived from magnetic resonance imaging (MRI) show that the proposed method significantly enhances the accuracy of breast surface imaging and the performance of surface clutter rejection.

  • Video Search Reranking with Relevance Feedback Using Visual and Textual Similarities

    Takamasa FUJII  Soh YOSHIDA  Mitsuji MUNEYASU  

     
    PAPER-Multimedia Environment Technology

      Vol:
    E102-A No:12
      Page(s):
    1900-1909

    In video search reranking, in addition to the well-known semantic gap, the intent gap, which is the gap between the representation of the users' demand and the real search intention, is becoming a major problem restricting the improvement of reranking performance. To address this problem, we propose video search reranking based on a semantic representation by multiple tags. In the proposed method, we use relevance feedback, which the user can interact with by specifying some example videos from the initial search results. We apply the relevance feedback to reduce the gap between the real intent of the users and the video search results. In addition, we focus on the fact that multiple tags are used to represent video contents. By vectorizing multiple tags associated with videos on the basis of the Word2Vec algorithm and calculating the centroid of the tag vector as a collective representation, we can evaluate the semantic similarity between videos by using tag features. We conduct experiments on the YouTube-8M dataset, and the results show that our reranking approach is effective and efficient.

  • Optimal Balanced Almost 8-QAM Sequences with Three-Level Autocorrelation

    Fanxin ZENG  Xiping HE  Guixin XUAN  Zhenyu ZHANG  Yanni PENG  Linjie QIAN  Li YAN  

     
    LETTER-Sequences

      Vol:
    E102-A No:12
      Page(s):
    1691-1696

    Based on the number of cyclotomy of order eight, a class of balanced almost 8-QAM sequences with odd prime periods is presented. The resultant sequences have low two-level nontrivial autocorrelation values, and their distribution is determined. Furthermore, the smallest possible absolute sidelobes (SPASs) of autocorrelation functions of balanced almost 8-QAM sequences are derived. Compared with the obtained SPASs, some of the proposed sequences is optimal or suboptimal.

  • User Transition Pattern Analysis for Travel Route Recommendation

    Junjie SUN  Chenyi ZHUANG  Qiang MA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/09/06
      Vol:
    E102-D No:12
      Page(s):
    2472-2484

    A travel route recommendation service that recommends a sequence of points of interest for tourists traveling in an unfamiliar city is a very useful tool in the field of location-based social networks. Although there are many web services and mobile applications that can help tourists to plan their trips by providing information about sightseeing attractions, travel route recommendation services are still not widely applied. One reason could be that most of the previous studies that addressed this task were based on the orienteering problem model, which mainly focuses on the estimation of a user-location relation (for example, a user preference). This assumes that a user receives a reward by visiting a point of interest and the travel route is recommended by maximizing the total rewards from visiting those locations. However, a location-location relation, which we introduce as a transition pattern in this paper, implies useful information such as visiting order and can help to improve the quality of travel route recommendations. To this end, we propose a travel route recommendation method by combining location and transition knowledge, which assigns rewards for both locations and transitions.

  • On the Performance Analysis of SPHINCS+ Verification

    Tae Gu KANG  Jinwoo LEE  Junyeng KIM  Dae Hyun YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/20
      Vol:
    E102-D No:12
      Page(s):
    2603-2606

    SPHINCS+, an updated version of SPHINCS, is a post-quantum hash-based signature scheme submitted to the NIST post-quantum cryptography standardization project. To evaluate its performance, SPHINCS+ gives the theoretical number of function calls and the actual runtime of a reference implementation. We show that the theoretical number of function calls for SPHINCS+ verification is inconsistent with the runtime and then present the correct number of function calls.

  • Improved Weighted Least Square Phase Estimation for OFDM-Based WLANs

    Xiaoping ZHOU  Bin WU  Kan ZHENG  Zhou WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:12
      Page(s):
    2027-2030

    In this paper, we propose an improved weighted least square (IWLS) method to estimate and compensate phase variations utilizing pilots, for Orthogonal Frequency Division Multiplexing (OFDM) based very high throughput wireless local area networks (WLANs). The remaining phase is composed of the common phase error (CPE) and the sampling time offset (STO). For IWLS, the CPE maximum likelihood (ML) estimation is proposed to improve the CPE estimation accuracy, while the STO fitting is proposed to enhance the estimation of STO. With these two mechanisms, IWLS can improve phase estimation performance. Simulation results show that, compared to weighted least square (WLS) scheme, a better pocket error rate (PER) is achieved by using the proposed method, but with a comparable complexity.

  • Performance Improvement of the Catastrophic CPM Scheme with New Split-Merged MNSED

    Richard Hsin-Hsyong YANG  Chia-Kun LEE  Shiunn-Jang CHERN  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2019/05/16
      Vol:
    E102-B No:11
      Page(s):
    2091-2103

    Continuous phase modulation (CPM) is a very attractive digital modulation scheme, with constant envelope feature and high efficiency in meeting the power and bandwidth requirements. CPM signals with pairs of input sequences that differ in an infinite number of positions and map into pairs of transmitted signals with finite Euclidean distance (ED) are called catastrophic. In the CPM scheme, data sequences that have the catastrophic property are called the catastrophic sequences; they are periodic difference data patterns. The catastrophic sequences are usually with shorter length of the merger. The corresponding minimum normalized squared ED (MNSED) is smaller and below the distance bound. Two important CPM schemes, viz., LREC and LRC schemes, are known to be catastrophic for most cases; they have poor overall power and bandwidth performance. In the literatures, it has been shown that the probability of generating such catastrophic sequences are negligible, therefore, the asymptotic error performance (AEP) of those well-known catastrophic CPM schemes evaluated with the corresponding MNSED, over AWGN channels, might be too negative or pessimistic. To deal with this problem in AWGN channel, this paper presents a new split-merged MNSED and provide criteria to explore which conventional catastrophic CPM scheme could increase the length of mergers with split-merged non-periodic events, effectively. For comparison, we investigate the exact power and bandwidth performance for LREC and LRC CPM for the same bandwidth occupancy. Computer simulation results verify that the AEP evaluating with the split-merged MNSED could achieve up to 3dB gain over the conventional approach.

  • Estimation of the Matrix Rank of Harmonic Components of a Spectrogram in a Piano Music Signal Based on the Stein's Unbiased Risk Estimator and Median Filter Open Access

    Seokjin LEE  

     
    LETTER-Music Information Processing

      Pubricized:
    2019/08/22
      Vol:
    E102-D No:11
      Page(s):
    2276-2279

    The estimation of the matrix rank of harmonic components of a music spectrogram provides some useful information, e.g., the determination of the number of basis vectors of the matrix-factorization-based algorithms, which is required for the automatic music transcription or in post-processing. In this work, we develop an algorithm based on Stein's unbiased risk estimator (SURE) algorithm with the matrix factorization model. The noise variance required for the SURE algorithm is estimated by suppressing the harmonic component via median filtering. An evaluation performed using the MIDI-aligned piano sounds (MAPS) database revealed an average estimation error of -0.26 (standard deviation: 4.4) for the proposed algorithm.

  • Amplification Characteristics of a Phase-Sensitive Amplifier of a Chirped Optical Pulse

    Kyo INOUE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2019/06/07
      Vol:
    E102-C No:11
      Page(s):
    818-824

    Phase-sensitive amplification (PSA) has unique properties, such as the quantum-limited noise figure of 0 dB and the phase clamping effect. This study investigates PSA characteristics when a chirped pulse is incident. The signal gain, the output waveform, and the noise figure for an optical pulse having been chirped through chromatic dispersion or self-phase modulation before amplification are analyzed. The results indicate that the amplification properties for a chirped pulse are different from those of a non-chirped pulse, such that the signal gain is small, the waveform is distorted, and the noise figure is degraded.

221-240hit(2849hit)