The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ASE(2849hit)

121-140hit(2849hit)

  • Interleaved Weighted Round-Robin: A Network Calculus Analysis Open Access

    Seyed Mohammadhossein TABATABAEE  Jean-Yves LE BOUDEC  Marc BOYER  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1479-1493

    Weighted Round-Robin (WRR) is often used, due to its simplicity, for scheduling packets or tasks. With WRR, a number of packets equal to the weight allocated to a flow can be served consecutively, which leads to a bursty service. Interleaved Weighted Round-Robin (IWRR) is a variant that mitigates this effect. We are interested in finding bounds on worst-case delay obtained with IWRR. To this end, we use a network calculus approach and find a strict service curve for IWRR. The result is obtained using the pseudo-inverse of a function. We show that the strict service curve is the best obtainable one, and that delay bounds derived from it are tight (i.e., worst-case) for flows of packets of constant size. Furthermore, the IWRR strict service curve dominates the strict service curve for WRR that was previously published. We provide some numerical examples to illustrate the reduction in worst-case delays caused by IWRR compared to WRR.

  • Efficient Reboot-Based Recovery of In-Memory Databases

    Yuto JUMONJI  Hiroshi YAMADA  

     
    PAPER-Dependable Computing

      Pubricized:
    2021/08/26
      Vol:
    E104-D No:12
      Page(s):
    2164-2172

    Reboot-based recovery is a simple but powerful method to recover applications from failures and unstable states. Reboot-based recovery faces a challenge to apply it to a new type of applications, in-memory databases (DBs). Unlike legacy applications, since rebooting in-memory DBs loses memory objects including key-value pairs and DB blocks, it is required to restore them, causing severe performance degradation after the reboot. This paper presents an approach that allows us to perform reboot-based recovery of in-memory DBs with lower performance degradation. Our key insight is to decouple data content objects from all the memory objects. Our approach treats data items as data content objects, preserves data content objects on memory across reboots, and enforces restarted in-memory DBs to attach them. To show the effectiveness of our approach, we elaborate the idea into two real-world DBs, MyRocks and memcached. The prototypes successfully mitigate performance degradation after their reboot-based recovery.

  • Experimental Demonstration of a Hard-Type Oscillator Using a Resonant Tunneling Diode and Its Comparison with a Soft-Type Oscillator

    Koichi MAEZAWA  Tatsuo ITO  Masayuki MORI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2021/06/07
      Vol:
    E104-C No:12
      Page(s):
    685-688

    A hard-type oscillator is defined as an oscillator having stable fixed points within a stable limit cycle. For resonant tunneling diode (RTD) oscillators, using hard-type configuration has a significant advantage that it can suppress spurious oscillations in a bias line. We have fabricated hard-type oscillators using an InGaAs-based RTD, and demonstrated a proper operation. Furthermore, the oscillating properties have been compared with a soft-type oscillator having a same parameters. It has been demonstrated that the same level of the phase noise can be obtained with a much smaller power consumption of approximately 1/20.

  • Gait Phase Partitioning and Footprint Detection Using Mutually Constrained Piecewise Linear Approximation with Dynamic Programming

    Makoto YASUKAWA  Yasushi MAKIHARA  Toshinori HOSOI  Masahiro KUBO  Yasushi YAGI  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2021/08/02
      Vol:
    E104-D No:11
      Page(s):
    1951-1962

    Human gait analysis has been widely used in medical and health fields. It is essential to extract spatio-temporal gait features (e.g., single support duration, step length, and toe angle) by partitioning the gait phase and estimating the footprint position/orientation in such fields. Therefore, we propose a method to partition the gait phase given a foot position sequence using mutually constrained piecewise linear approximation with dynamic programming, which not only represents normal gait well but also pathological gait without training data. We also propose a method to detect footprints by accumulating toe edges on the floor plane during stance phases, which enables us to detect footprints more clearly than a conventional method. Finally, we extract four spatial/temporal gait parameters for accuracy evaluation: single support duration, double support duration, toe angle, and step length. We conducted experiments to validate the proposed method using two types of gait patterns, that is, healthy and mimicked hemiplegic gait, from 10 subjects. We confirmed that the proposed method could estimate the spatial/temporal gait parameters more accurately than a conventional skeleton-based method regardless of the gait pattern.

  • Synthetic Scene Character Generator and Ensemble Scheme with the Random Image Feature Method for Japanese and Chinese Scene Character Recognition

    Fuma HORIE  Hideaki GOTO  Takuo SUGANUMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/08/24
      Vol:
    E104-D No:11
      Page(s):
    2002-2010

    Scene character recognition has been intensively investigated for a couple of decades because it has a great potential in many applications including automatic translation, signboard recognition, and reading assistance for the visually-impaired. However, scene characters are difficult to recognize at sufficient accuracy owing to various noise and image distortions. In addition, Japanese scene character recognition is more challenging and requires a large amount of character data for training because thousands of character classes exist in the language. Some researchers proposed training data augmentation techniques using Synthetic Scene Character Data (SSCD) to compensate for the shortage of training data. In this paper, we propose a Random Filter which is a new method for SSCD generation, and introduce an ensemble scheme with the Random Image Feature (RI-Feature) method. Since there has not been a large Japanese scene character dataset for the evaluation of the recognition systems, we have developed an open dataset JPSC1400, which consists of a large number of real Japanese scene characters. It is shown that the accuracy has been improved from 70.9% to 83.1% by introducing the RI-Feature method to the ensemble scheme.

  • Faster SET Operation in Phase Change Memory with Initialization Open Access

    Yuchan WANG  Suzhen YUAN  Wenxia ZHANG  Yuhan WANG  

     
    PAPER-Electronic Materials

      Pubricized:
    2021/04/14
      Vol:
    E104-C No:11
      Page(s):
    651-655

    In conclusion, an initialization method has been introduced and studied to improve the SET speed in PCM. Before experiment verification, a two-dimensional finite analysis is used, and the results illustrate the proposed method is feasible to improve SET speed. Next, the R-I performances of the discrete PCM device and the resistance distributions of a 64 M bits PCM test chip with and without the initialization have been studied and analyzed, which confirms that the writing speed has been greatly improved. At the same time, the resistance distribution for the repeated initialization operations suggest that a large number of PCM cells have been successfully changed to be in an intermediate state, which is thought that only a shorter current pulse can make the cells SET successfully in this case. Compared the transmission electron microscope (TEM) images before and after initialization, it is found that there are some small grains appeared after initialization, which indicates that the nucleation process of GST has been carried out, and only needs to provide energy for grain growth later.

  • Clustering for Signal Power Distribution Toward Low Storage Crowdsourced Spectrum Database

    Yoji UESUGI  Keita KATAGIRI  Koya SATO  Kei INAGE  Takeo FUJII  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1237-1248

    This paper proposes a measurement-based spectrum database (MSD) with clustered fading distributions toward greater storage efficiencies. The conventional MSD can accurately model the actual characteristics of multipath fading by plotting the histogram of instantaneous measurement data for each space-separated mesh and utilizing it in communication designs. However, if the database contains all of a distribution for each location, the amount of data stored will be extremely large. Because the main purpose of the MSD is to improve spectral efficiency, it is necessary to reduce the amount of data stored while maintaining quality. The proposed method reduces the amount of stored data by estimating the distribution of the instantaneous received signal power at each point and integrating similar distributions through clustering. Numerical results show that clustering techniques can reduce the amount of data while maintaining the accuracy of the MSD. We then apply the proposed method to the outage probability prediction for the instantaneous received signal power. It is revealed that the prediction accuracy is maintained even when the amount of data is reduced.

  • S-to-X Band 360-Degree RF Phase Detector IC Consisting of Symmetrical Mixers and Tunable Low-Pass Filters

    Akihito HIRAI  Kazutomi MORI  Masaomi TSURU  Mitsuhiro SHIMOZAWA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    559-567

    This paper demonstrates that a 360° radio-frequency phase detector consisting of a combination of symmetrical mixers and 45° phase shifters with tunable devices can achieve a low phase-detection error over a wide frequency range. It is shown that the phase detection error does not depend on the voltage gain of the 45° phase shifter. This allows the usage of tunable devices as 45° phase shifters for a wide frequency range with low phase-detection errors. The fabricated phase detector having tunable low-pass filters as the tunable device demonstrates phase detection errors lower than 2.0° rms in the frequency range from 3.0 GHz to 10.5 GHz.

  • Quantum-Noise-Limited BPSK Transmission Using Gain-Saturated Phase-Sensitive Amplifiers

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/04/14
      Vol:
    E104-B No:10
      Page(s):
    1268-1276

    Quantum noise ultimately restricts the transmission distance in fiber communication systems using optical amplifiers. This paper investigates the quantum-noise-limited performance of optical binary phase-shift keying transmission using gain-saturated phase-sensitive amplifiers (PSAs) as optical repeaters. It is shown that coherent state transmission, where ultimately clean light in the classical sense is transmitted, and endless transmission, where the transmission distance is not restricted, are theoretically achievable under certain system conditions owing to the noise suppression effects of the gain-saturated PSA.

  • Diversity-Robust Acoustic Feature Signatures Based on Multiscale Fractal Dimension for Similarity Search of Environmental Sounds

    Motohiro SUNOUCHI  Masaharu YOSHIOKA  

     
    PAPER-Music Information Processing

      Pubricized:
    2021/07/02
      Vol:
    E104-D No:10
      Page(s):
    1734-1748

    This paper proposes new acoustic feature signatures based on the multiscale fractal dimension (MFD), which are robust against the diversity of environmental sounds, for the content-based similarity search. The diversity of sound sources and acoustic compositions is a typical feature of environmental sounds. Several acoustic features have been proposed for environmental sounds. Among them is the widely-used Mel-Frequency Cepstral Coefficients (MFCCs), which describes frequency-domain features. However, in addition to these features in the frequency domain, environmental sounds have other important features in the time domain with various time scales. In our previous paper, we proposed enhanced multiscale fractal dimension signature (EMFD) for environmental sounds. This paper extends EMFD by using the kernel density estimation method, which results in better performance of the similarity search tasks. Furthermore, it newly proposes another acoustic feature signature based on MFD, namely very-long-range multiscale fractal dimension signature (MFD-VL). The MFD-VL signature describes several features of the time-varying envelope for long periods of time. The MFD-VL signature has stability and robustness against background noise and small fluctuations in the parameters of sound sources, which are produced in field recordings. We discuss the effectiveness of these signatures in the similarity sound search by comparing with acoustic features proposed in the DCASE 2018 challenges. Due to the unique descriptiveness of our proposed signatures, we confirmed the signatures are effective when they are used with other acoustic features.

  • A Study on Highly Efficient Dual-Input Power Amplifiers for Large PAPR Signals Open Access

    Atsushi YAMAOKA  Thomas M. HONE  Yoshimasa EGASHIRA  Keiichi YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-C No:10
      Page(s):
    506-515

    With the advent of 5G and external pressure to reduce greenhouse gas emissions, wireless transceivers with low power consumption are strongly desired for future cellular systems. At the same time, increased modulation order due to the evolution of cellular systems will force power amplifiers to operate at much larger output power back-off to prevent EVM degradation. This paper begins with an analysis of load modulation and asymmetrical Doherty amplifiers. Measurement results will show an apparent 60% efficiency plateau for modulated signals with a large peak-to-average power ratio (PAPR). To exceed this efficiency limitation, the second part of this paper focuses on a new amplification topology based on the amalgamation between Doherty and outphasing. Measurement results of the proposed Doherty-outphasing power amplifier (DOPA) will confirm the feasibility of the approach with a modulated efficiency greater than 70% measured at 10 dB output power back-off.

  • Overview and Prospects of High Power Amplifier Technology Trend for 5G and beyond 5G Base Stations Open Access

    Koji YAMANAKA  Shintaro SHINJO  Yuji KOMATSUZAKI  Shuichi SAKATA  Keigo NAKATANI  Yutaro YAMAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-C No:10
      Page(s):
    526-533

    High power amplifier technologies for base transceiver stations (BTSs) for the 5th generation (5G) mobile communication systems and so-called beyond 5G (B5G) systems are reviewed. For sub-6, which is categorized into frequency range 1 (FR1) in 5G, wideband Doherty amplifiers are introduced, and a multi-band load modulation amplifier, an envelope tracking amplifier, and a digital power amplifier for B5G are explained. For millimeter wave 5G, which is categorized into frequency range 2 (FR2), GaAs and GaN MMICs operating at around 28GHz are introduced. Finally, future prospect for THz GaN devices is described.

  • Image Based Coding of Spatial Probability Distribution on Human Dynamics Data

    Hideaki KIMATA  Xiaojun WU  Ryuichi TANIDA  

     
    PAPER

      Pubricized:
    2021/06/24
      Vol:
    E104-D No:10
      Page(s):
    1545-1554

    The need for real-time use of human dynamics data is increasing. The technical requirements for this include improved databases for handling a large amount of data as well as highly accurate sensing of people's movements. A bitmap index format has been proposed for high-speed processing of data that spreads in a two-dimensional space. Using the same format is expected to provide a service that searches queries, reads out desired data, visualizes it, and analyzes it. In this study, we propose a coding format that enables human dynamics data to compress it in the target data size, in order to save data storage for successive increase of real-time human dynamics data. In the proposed method, the spatial population distribution, which is expressed by a probability distribution, is approximated and compressed using the one-pixel one-byte data format normally used for image coding. We utilize two kinds of approximation, which are accuracy of probability and precision of spatial location, in order to control the data size and the amount of information. For accuracy of probability, we propose a non-linear mapping method for the spatial distribution, and for precision of spatial location, we propose spatial scalable layered coding to refine the mesh level of the spatial distribution. Also, in order to enable additional detailed analysis, we propose another scalable layered coding that improves the accuracy of the distribution. We demonstrate through experiments that the proposed data approximation and coding format achieve sufficient approximation of spatial population distribution in the given condition of target data size.

  • A Noise-Canceling Charge Pump for Area Efficient PLL Design Open Access

    Go URAKAWA  Hiroyuki KOBAYASHI  Jun DEGUCHI  Ryuichi FUJIMOTO  

     
    PAPER

      Pubricized:
    2021/04/20
      Vol:
    E104-C No:10
      Page(s):
    625-634

    In general, since the in-band noise of phase-locked loops (PLLs) is mainly caused by charge pumps (CPs), large-size transistors that occupy a large area are used to improve in-band noise of CPs. With the high demand for low phase noise in recent high-performance communication systems, the issue of the trade-off between occupied area and noise in conventional CPs has become significant. A noise-canceling CP circuit is presented in this paper to mitigate the trade-off between occupied area and noise. The proposed CP can achieve lower noise performance than conventional CPs by performing additional noise cancelation. According to the simulation results, the proposed CP can reduce the current noise to 57% with the same occupied area, or can reduce the occupied area to 22% compared with that of the conventional CPs at the same noise performance. We fabricated a prototype of the proposed CP embedded in a 28-GHz LC-PLL using a 16-nm FinFET process, and 1.2-dB improvement in single sideband integrated phase noise is achieved.

  • Linearization Technologies for High Efficiency Power Amplifier of Cellular Base Stations Open Access

    Yasunori SUZUKI  Shoichi NARAHASHI  

     
    INVITED PAPER

      Pubricized:
    2021/03/24
      Vol:
    E104-C No:10
      Page(s):
    534-542

    This paper presents linearization technologies for high efficiency power amplifiers of cellular base stations. These technologies are important to actualizing highly efficient power amplifiers that reduce power consumption of the base station equipment and to achieving a sufficient non-linear distortion compensation level. It is well known that it is very difficult for a power amplifier using linearization technologies to achieve simultaneously high efficiency and a sufficient non-linear distortion compensation level. This paper presents two approaches toward addressing this technical issue. The first approach is a feed-forward power amplifier using the Doherty amplifier as the main amplifier. The second approach is a digital predistortion linearizer that compensates for frequency dependent intermodulation distortion components. Experimental results validate these approaches as effective for providing power amplification for base stations.

  • Effects of Oscillator Phase Noise on Frequency Delta Sigma Modulators with a High Oversampling Ratio for Sensor Applications

    Koichi MAEZAWA  Masayuki MORI  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    463-466

    Frequency delta sigma modulation (FDSM) is a unique analog to digital conversion technique featuring large dynamic range with wide frequency band width. It can be used for high performance digital-output sensors, if the oscillator in the FDSM is replaced by a variable frequency oscillator whose frequency depends on a certain external physical quantity. One of the most important parameters governing the performance of these sensors is a phase noise of the oscillator. The phase noise is an essential error source in the FDSM, and it is quite important for this type of sensors because they use a high frequency oscillator and an extremely large oversampling ratio. In this paper, we will discuss the quantitative effects of the phase noise on the FDSM output on the basis of a simple model. The model was validated with experiments for three types of oscillators.

  • Planarized Nb 4-Layer Fabrication Process for Superconducting Integrated Circuits and Its Fabricated Device Evaluation

    Shuichi NAGASAWA  Masamitsu TANAKA  Naoki TAKEUCHI  Yuki YAMANASHI  Shigeyuki MIYAJIMA  Fumihiro CHINA  Taiki YAMAE  Koki YAMAZAKI  Yuta SOMEI  Naonori SEGA  Yoshinao MIZUGAKI  Hiroaki MYOREN  Hirotaka TERAI  Mutsuo HIDAKA  Nobuyuki YOSHIKAWA  Akira FUJIMAKI  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-C No:9
      Page(s):
    435-445

    We developed a Nb 4-layer process for fabricating superconducting integrated circuits that involves using caldera planarization to increase the flexibility and reliability of the fabrication process. We call this process the planarized high-speed standard process (PHSTP). Planarization enables us to flexibly adjust most of the Nb and SiO2 film thicknesses; we can select reduced film thicknesses to obtain larger mutual coupling depending on the application. It also reduces the risk of intra-layer shorts due to etching residues at the step-edge regions. We describe the detailed process flows of the planarization for the Josephson junction layer and the evaluation of devices fabricated with PHSTP. The results indicated no short defects or degradation in junction characteristics and good agreement between designed and measured inductances and resistances. We also developed single-flux-quantum (SFQ) and adiabatic quantum-flux-parametron (AQFP) logic cell libraries and tested circuits fabricated with PHSTP. We found that the designed circuits operated correctly. The SFQ shift-registers fabricated using PHSTP showed a high yield. Numerical simulation results indicate that the AQFP gates with increased mutual coupling by the planarized layer structure increase the maximum interconnect length between gates.

  • Explanatory Rule Generation for Advanced Driver Assistant Systems

    Juha HOVI  Ryutaro ICHISE  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/06/11
      Vol:
    E104-D No:9
      Page(s):
    1427-1439

    Autonomous vehicles and advanced driver assistant systems (ADAS) are receiving notable attention as research fields in both academia and private industry. Some decision-making systems use sets of logical rules to map knowledge of the ego-vehicle and its environment into actions the ego-vehicle should take. However, such rulesets can be difficult to create — for example by manually writing them — due to the complexity of traffic as an operating environment. Furthermore, the building blocks of the rules must be defined. One common solution to this is using an ontology specifically aimed at describing traffic concepts and their hierarchy. These ontologies must have a certain expressive power to enable construction of useful rules. We propose a process of generating sets of explanatory rules for ADAS applications from data using ontology as a base vocabulary and present a ruleset generated as a result of our experiments that is correct for the scope of the experiment.

  • Nonvolatile Field-Programmable Gate Array Using a Standard-Cell-Based Design Flow

    Daisuke SUZUKI  Takahiro HANYU  

     
    PAPER-Logic Design

      Pubricized:
    2021/04/16
      Vol:
    E104-D No:8
      Page(s):
    1111-1120

    A nonvolatile field-programmable gate array (NV-FPGA), where the circuit-configuration information still remains without power supply, offers a powerful solution against the standby power issue. In this paper, an NV-FPGA is proposed where the programmable logic and interconnect function blocks are described in a hardware description language and are pushed through a standard-cell-based design flow with nonvolatile flip-flops. The use of the standard-cell-based design flow makes it possible to migrate any arbitrary process technology and to perform architecture-level simulation with physical information. As a typical example, the proposed NV-FPGA is designed under 55nm CMOS/100nm magnetic tunnel junction (MTJ) technologies, and the performance of the proposed NV-FPGA is evaluated in comparison with that of a CMOS-only volatile FPGA.

  • Preparation Copper Sulfide Nanoparticles by Laser Ablation in Liquid and Optical Properties

    Kazuki ISODA  Ryuga YANAGIHARA  Yoshitaka KITAMOTO  Masahiko HARA  Hiroyuki WADA  

     
    BRIEF PAPER-Ultrasonic Electronics

      Pubricized:
    2021/02/08
      Vol:
    E104-C No:8
      Page(s):
    390-393

    Copper sulfide nanoparticles were successfully prepared by laser ablation in liquid. CuS powders in deionized water were irradiated with nanosecond-pulsed laser (Nd:YAG, SHG) to prepare nanoparticles. Prepared nanoparticles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and fluorospectrometer. According to the results of SEM and DLS, the primary and secondary particle size was decreased with the increase in laser fluence of laser ablation in liquid. The ratio of Cu and S of prepared nanoparticles were not changed. The absorbance of prepared copper sulfide nanoparticles in water was increased with the increase in laser fluence.

121-140hit(2849hit)