The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ASE(2849hit)

281-300hit(2849hit)

  • Fabrication and Evaluation of Integrated Photonic Array-Antenna System for RoF Based Remote Antenna Beam Forming

    Takayoshi HIRASAWA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E102-C No:3
      Page(s):
    235-242

    This paper studies the performance of the quantitative RF power variation in Radio-over-Fiber beam forming system utilizing a phased array-antenna integrating photo-diodes in downlink network for next generation millimeter wave band radio access. Firstly, we described details of fabrication of an integrated photonic array-antenna (IPA), where a 60GHz patch antenna 4×2 array and high-speed photo-diodes were integrated into a substrate. We evaluated RF transmission efficiency as an IPA system for Radio-over-Fiber (RoF)-based mobile front hall architecture with remote antenna beam forming capability. We clarified the characteristics of discrete and integrated devices such as an intensity modulator (IM), an optical fiber and the IPA and calculated RF power radiated from the IPA taking account of the measured data of the devices. Based on the experimental results on RF tone signal transmission by utilizing the IPA, attainable transmission distance of wireless communication by improvement and optimization of the used devices was discussed. We deduced that the antenna could output sufficient power when we consider that the cell size of the future mobile communication systems would be around 100 meters or smaller.

  • Scalable State Space Search with Structural-Bottleneck Heuristics for Declarative IT System Update Automation Open Access

    Takuya KUWAHARA  Takayuki KURODA  Manabu NAKANOYA  Yutaka YAKUWA  Hideyuki SHIMONISHI  

     
    PAPER

      Pubricized:
    2018/09/20
      Vol:
    E102-B No:3
      Page(s):
    439-451

    As IT systems, including network systems using SDN/NFV technologies, become large-scaled and complicated, the cost of system management also increases rapidly. Network operators have to maintain their workflow in constructing and consistently updating such complex systems, and thus these management tasks in generating system update plan are desired to be automated. Declarative system update with state space search is a promising approach to enable this automation, however, the current methods is not enough scalable to practical systems. In this paper, we propose a novel heuristic approach to greatly reduce computation time to solve system update procedure for practical systems. Our heuristics accounts for structural bottleneck of the system update and advance search to resolve bottlenecks of current system states. This paper includes the following contributions: (1) formal definition of a novel heuristic function specialized to system update for A* search algorithm, (2) proofs that our heuristic function is consistent, i.e., A* algorithm with our heuristics returns a correct optimal solution and can omit repeatedly expansion of nodes in search spaces, and (3) results of performance evaluation of our heuristics. We evaluate the proposed algorithm in two cases; upgrading running hypervisor and rolling update of running VMs. The results show that computation time to solve system update plan for a system with 100 VMs does not exceed several minutes, whereas the conventional algorithm is only applicable for a very small system.

  • A Novel Four-Point Model Based Unit-Norm Constrained Least Squares Method for Single-Tone Frequency Estimation

    Zhe LI  Yili XIA  Qian WANG  Wenjiang PEI  Jinguang HAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:2
      Page(s):
    404-414

    A novel time-series relationship among four consecutive real-valued single-tone sinusoid samples is proposed based on their linear prediction property. In order to achieve unbiased frequency estimates for a real sinusoid in white noise, based on the proposed four-point time-series relationship, a constrained least squares cost function is minimized based on the unit-norm principle. Closed-form expressions for the variance and the asymptotic expression for the variance of the proposed frequency estimator are derived, facilitating a theoretical performance comparison with the existing three-point counterpart, called as the reformed Pisarenko harmonic decomposer (RPHD). The region of performance advantage of the proposed four-point based constrained least squares frequency estimator over the RPHD is also discussed. Computer simulations are conducted to support our theoretical development and to compare the proposed estimator performance with the RPHD as well as the Cramer-Rao lower bound (CRLB).

  • Electrophoretic Co-Deposition of Alumina-Resin Composites on Metal Substrate Using Polydimethylsiloxane-Based Organic-Inorganic Hybrid Materials as Binders

    Yusuke AOKI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    199-202

    Electrophoretic deposition (EPD) usingpolydimethylsiloxane(PDMS)-based organic-inorganic hybrid materials as binders can be used to prepare alumina-binder composites on metal substrates. Herein, we investigated the deposition mechanism of PDMS-based polymers. The composition and porosity of EPD composites can be controlled by adjusting the EPD condition, and shape of alumina particles.

  • Design of CPM-PNC Using the Titled-Phase Model over AWGN Channels

    Nan SHA  Mingxi GUO  Yuanyuan GAO  Lihua CHEN  Kui XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:2
      Page(s):
    476-479

    In this letter, a physical-layer network coding (PNC) scheme based on continuous phase modulation (CPM) signal using the titled-phase model, i.e., TIP-CPM-PNC, is presented, and the combined titled-phase state trellis for the superimposed CPM signal in TIP-CPM-PNC is discussed. Simulation results show that the proposed scheme with low decoding complexity can achieve the same error performance as CPM-PNC using the traditional-phase model.

  • Simple Comparison Method for Impedance Measurement of Artificial Mains Network with CISPR 16-1-2 Standard

    Ryoko KISHIKAWA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/07/30
      Vol:
    E102-B No:2
      Page(s):
    345-350

    This paper presents a simple method for comparing the impedance of an artificial mains network (AMN) with the International Special Committee on Radio Interference (CISPR) 16-1-2 standard. The circuit of a vector network analyzer, which is an impedance measurement instrument, is not ideal, and the measured impedances include measurement uncertainties. However, complete uncertainty analysis is not required in the proposed method. By comparing the relative relationship between the measured impedance of an AMN under test and the measured impedance of the original transfer standards whose impedance is modeled by the regulated impedance in the CISPR 16-1-2 standard, conformity to the standard can be determined. The magnitude and phase of the impedance of an AMN can be independently analyzed. To demonstrate the method, we apply it to a commercially available AMN. The comparison result is found to be equivalent to the result based on a complete uncertainty analysis, which confirms that the proposed comparison method is feasible.

  • Neural Oscillation-Based Classification of Japanese Spoken Sentences During Speech Perception

    Hiroki WATANABE  Hiroki TANAKA  Sakriani SAKTI  Satoshi NAKAMURA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2018/11/14
      Vol:
    E102-D No:2
      Page(s):
    383-391

    Brain-computer interfaces (BCIs) have been used by users to convey their intentions directly with brain signals. For example, a spelling system that uses EEGs allows letters on a display to be selected. In comparison, previous studies have investigated decoding speech information such as syllables, words from single-trial brain signals during speech comprehension, or articulatory imagination. Such decoding realizes speech recognition with a relatively short time-lag and without relying on a display. Previous magnetoencephalogram (MEG) research showed that a template matching method could be used to classify three English sentences by using phase patterns in theta oscillations. This method is based on the synchronization between speech rhythms and neural oscillations during speech processing, that is, theta oscillations synchronized with syllabic rhythms and low-gamma oscillations with phonemic rhythms. The present study aimed to approximate this classification method to a BCI application. To this end, (1) we investigated the performance of the EEG-based classification of three Japanese sentences and (2) evaluated the generalizability of our models to other different users. For the purpose of improving accuracy, (3) we investigated the performances of four classifiers: template matching (baseline), logistic regression, support vector machine, and random forest. In addition, (4) we propose using novel features including phase patterns in a higher frequency range. Our proposed features were constructed in order to capture synchronization in a low-gamma band, that is, (i) phases in EEG oscillations in the range of 2-50 Hz from all electrodes used for measuring EEG data (all) and (ii) phases selected on the basis of feature importance (selected). The classification results showed that, except for random forest, most classifiers perform similarly. Our proposed features improved the classification accuracy with statistical significance compared with a baseline feature, which is a phase pattern in neural oscillations in the range of 4-8 Hz from the right hemisphere. The best mean accuracy across folds was 55.9% using template matching trained by all features. We concluded that the use of phase information in a higher frequency band improves the performance of EEG-based sentence classification and that this model is applicable to other different users.

  • Patterning of OLED Glass Substrate for Improving Light Outcoupling Efficiency

    Savanna LLOYD  Tatsuya TANIGAWA  Heisuke SAKAI  Hideyuki MURATA  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    180-183

    In this work, we have successfully patterned OLED glass substrates with a novel Yb-doped femtosecond laser. Such patterns can simultaneously increase the outcoupling efficiency up to 24.4%, as a result of reducing substrate waveguided light by scattering at the substrate/air interface and reduce the viewing angle dependence of the electroluminescent spectra.

  • Positioning Method for Wireless LAN Based on RTK-GPS

    Hiroki MUSHA  Masahiro FUJII  

     
    LETTER

      Vol:
    E102-A No:1
      Page(s):
    205-208

    This letter proposes a new positioning method for WLAN (Wireless Local Area Network) systems based on a principle of the RTK-GPS (Real Time Kinematic-Global Positioning System). The proposed method collects observations of the carrier phase at access points for a double phase difference of the RTK-GPS. We show a numerical example for evaluations of the proposed method considering the measurement error by computer simulations.

  • Convergence Comparison on the IDR(s)-Based IPNMs for Electromagnetic Multiple Scattering Simulations

    Norimasa NAKASHIMA  Seiji FUJINO  

     
    BRIEF PAPER

      Vol:
    E102-C No:1
      Page(s):
    51-55

    This paper presents various Iterative Progressive Numerical Methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects. We previously modified the original IPNM from the standpoint of the classical and the IDR-based linear iterative solvers. We demonstrate the performance of the IDR(s)-based IPNMs through some numerical examples of EM wave scattering from regularly placed 27 perfectly electric conducting spheres.

  • A Congestion Control Method for Named Data Networking with Hop-by-Hop Window-Based Approach

    Takahiko KATO  Masaki BANDAI  Miki YAMAMOTO  

     
    PAPER-Network System

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    97-110

    Congestion control is a hot topic in named data networking (NDN). Congestion control methods for NDN are classified into two approaches: the rate-based approach and the window-based approach. In the window-based approach, the optimum window size cannot be determined due to the largely changing round-trip time. Therefore, the rate-based approach is considered to be suitable for NDN and has been studied actively. However, there is still room for improvement in the window-based approach because hop-by-hop control in this approach has not been explored. In this paper, we propose a hop-by-hop widow-based congestion control method for NDN (HWCC). The proposed method introduces a window-size control for per-hop Interest transmission using hop-by-hop acknowledgment. In addition, we extend HWCC so that it can support multipath forwarding (M-HWCC) in order to increase the network resources utilization. The simulation results show that both of HWCC and M-HWCC achieve high throughput performance, as well as the max-min fairness, while effectively avoiding congestion.

  • A 65 nm 19.1-to-20.4 GHz Sigma-Delta Fractional-N Frequency Synthesizer with Two-Point Modulation for FMCW Radar Applications

    Yuanyuan XU  Wei LI  Wei WANG  Dan WU  Lai HE  Jintao HU  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:1
      Page(s):
    64-76

    A 19.1-to-20.4 GHz sigma-delta fractional-N frequency synthesizer with two-point modulation (TPM) for frequency modulated continuous wave (FMCW) radar applications is presented. The FMCW synthesizer proposes a digital and voltage controlled oscillator (D/VCO) with large continuous frequency tuning range and small digital controlled oscillator (DCO) gain variation to support TPM. By using TPM technique, it avoids the correlation between loop bandwidth and chirp slope, which is beneficial to fast chirp, phase noise and linearity. The start frequency, bandwidth and slope of the FMCW signal are all reconfigurable independently. The FMCW synthesizer achieves a measured phase noise of -93.32 dBc/Hz at 1MHz offset from a 19.25 GHz carrier and less than 10 µs locking time. The root-mean-square (RMS) frequency error is only 112 kHz with 94 kHz/µs chirp slope, and 761 kHz with a fast slope of 9.725 MHz/µs respectively. Implemented in 65 nm CMOS process, the synthesizer consumes 74.3 mW with output buffer.

  • Optimizing Online Permutation-Based AE Schemes for Lightweight Applications

    Yu SASAKI  Kan YASUDA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    35-47

    We explore ways to optimize online, permutation-based authenticated encryption (AE) schemes for lightweight applications. The lightweight applications demand that AE schemes operate in resource-constrained environments, which raise two issues: 1) implementation costs must be low, and 2) ensuring proper use of a nonce is difficult due to its small size and lack of randomness. Regarding the implementation costs, recently it has been recognized that permutation-based (rather than block-cipher-based) schemes frequently show advantages. However, regarding the security under nonce misuse, the standard permutation-based duplex construction cannot ensure confidentiality. There exists one permutation-based scheme named APE which offers certain robustness against nonce misuse. Unfortunately, the APE construction has several drawbacks such as ciphertext expansion and bidirectional permutation circuits. The ciphertext expansion would require more bandwidth, and the bidirectional circuits would require a larger hardware footprint. In this paper, we propose new constructions of online permutation-based AE that require less bandwidth, a smaller hardware footprint and lower computational costs. We provide security proofs for the new constructions, demonstrating that they are as secure as the APE construction.

  • Fast and Scalable Bilinear-Type Conversion Method for Large Scale Crypto Schemes Open Access

    Masayuki ABE  Fumitaka HOSHINO  Miyako OHKUBO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    251-269

    Bilinear-type conversion is to translate a cryptographic scheme designed over symmetric bilinear groups into one that works over asymmetric bilinear groups with small overhead regarding the size of objects concerned in the target scheme. In this paper, we address scalability for converting complex cryptographic schemes. Our contribution is threefold. Investigating complexity of bilinear-type conversion. We show that there exists no polynomial-time algorithm for worst-case inputs under standard complexity assumption. It means that bilinear-type conversion in general is an inherently difficult problem. Presenting a new scalable conversion method. Nevertheless, we show that large-scale conversion is indeed possible in practice when the target schemes are built from smaller building blocks with some structure. We present a novel conversion method, called IPConv, that uses 0-1 Integer Programming instantiated with a widely available IP solver. It instantly converts schemes containing more than a thousand of variables and hundreds of pairings. Application to computer-aided design. Our conversion method is also useful in modular design of middle to large scale cryptographic applications; first construct over simpler symmetric bilinear groups and run over efficient asymmetric groups. Thus one can avoid complication of manually allocating variables over asymmetric bilinear groups. We demonstrate its usefulness by somewhat counter-intuitive examples where converted DLIN-based Groth-Sahai proofs are more compact than manually built SXDH-based proofs. Though the early purpose of bilinear-type conversion is to save existing schemes from attacks against symmetric bilinear groups, our new scalable conversion method will find more applications beyond the original goal. Indeed, the above computer-aided design can be seen as a step toward automated modular design of cryptographic schemes.

  • An ASIC Crypto Processor for 254-Bit Prime-Field Pairing Featuring Programmable Arithmetic Core Optimized for Quadratic Extension Field

    Hiromitsu AWANO  Tadayuki ICHIHASHI  Makoto IKEDA  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    56-64

    An ASIC crypto processor optimized for the 254-bit prime-field optimal-ate pairing over Barreto-Naehrig (BN) curve is proposed. The data path of the proposed crypto processor is designed to compute five Fp2 operations, a multiplication, three addition/subtractions, and an inversion, simultaneously. We further propose a design methodology to automate the instruction scheduling by using a combinatorial optimization solver, with which the total cycle count is reduced to 1/2 compared with ever reported. The proposed crypto processor is designed and fabricated by using a 65nm silicon-on-thin-box (SOTB) CMOS process. The chip measurement result shows that the fabricated chip successfully computes a pairing in 0.185ms when a typical operating voltage of 1.20V is applied, which corresponds to 2.8× speed up compared to the current state-of-the-art pairing implementation on ASIC platform.

  • Multi-Phase Synchronization Phenomena in a Ring-Coupled System of Digital Spiking Neurons

    Hiroaki UCHIDA  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Vol:
    E102-A No:1
      Page(s):
    235-241

    This paper studies synchronization phenomena in a ring-coupled system of digital spiking neurons. The neuron consists of two shift registers connected by a wiring circuit and can generate various spike-trains. Applying a spike based connection, the ring-coupled system is constructed. The ring-coupled system can generate multi-phase synchronization phenomena of various periodic spike-trains. Using a simple dynamic model, existence and stability of the synchronization phenomena are analyzed. Presenting a FPGA based test circuit, typical synchronization phenomena are confirmed experimentally.

  • Improvement of Ranging Accuracy during Interference Avoidance for Stepped FM Radar Using Khatri-Rao Product Extended-Phase Processing

    Keiji JIMI  Isamu MATSUNAMI  Ryohei NAKAMURA  

     
    PAPER-Sensing

      Pubricized:
    2018/07/17
      Vol:
    E102-B No:1
      Page(s):
    156-164

    In stepped FM radar, the transmitter intermittently transmits narrowband pulse trains of frequencies that are incremented in steps, and the receiver performs phase detection on each pulse and applies the inverse discrete Fourier transform (IDFT) to create ultra-short pulses in the time domain. Furthermore, since the transmitted signal consists of a narrowband pulse train of different frequencies, the transmitter can avoid arbitrary frequency bands while sending the pulse train (spectrum holes), allowing these systems to coexist with other narrowband wireless systems. However, spectrum holes cause degradation in the distance resolution and range sidelobe characteristics of wireless systems. In this paper, we propose a spectrum hole compensation method for stepped FM radars using Khatri-Rao product extended-phase processing to overcome the problem of spectrum holes and investigate the effectiveness of this method through experiments. Additionally, we demonstrate that the proposed method dramatically improves the range sidelobe and distance resolution characteristics.

  • A Fundamental Study on Vehicle Detection in Flooded Urban Area Using Quad-Polarimetric SAR Data

    Takanori ISHIKURO  Ryoichi SATO  Yoshio YAMAGUCHI  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E102-C No:1
      Page(s):
    38-45

    In this paper, we propose a simple algorithm for detecting a vehicle trapped in flooded urban area by using quad-polarimetric SAR data. The four-component scattering power decomposition and phase difference of HH-VV co-pol ratio are effectively used in the proposed algorithm. Here we carry out polarimetric scattering measurement for a scaled vehicle model surrounded by two buildings model in an anechoic chamber, to acquire the quad-polarimetric SAR data. It is confirmed from the results of the image analysis for the measured SAR data that the proposed algorithm for vehicle detection works well even under severe environment where the vehicle is set in the shadow of the building and/or the alignment of the vehicle or the buildings is obliquely oriented to direction of the radar line of sight.

  • Discovering Co-Cluster Structure from Relationships between Biased Objects

    Iku OHAMA  Takuya KIDA  Hiroki ARIMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    3108-3122

    Latent variable models for relational data enable us to extract the co-cluster structure underlying observed relational data. The Infinite Relational Model (IRM) is a well-known relational model for discovering co-cluster structures with an unknown number of clusters. The IRM and several related models commonly assume that the link probability between two objects depends only on their cluster assignment. However, relational models based on this assumption often lead us to extract many non-informative and unexpected clusters. This is because the cluster structures underlying real-world relationships are often blurred by biases of individual objects. To overcome this problem, we propose a multi-layered framework, which extracts a clear de-blurred co-cluster structure in the presence of object biases. Then, we propose the Multi-Layered Infinite Relational Model (MLIRM) which is a special instance of the proposed framework incorporating the IRM as a co-clustering model. Furthermore, we reveal that some relational models can be regarded as special cases of the MLIRM. We derive an efficient collapsed Gibbs sampler to perform posterior inference for the MLIRM. Experiments conducted using real-world datasets have confirmed that the proposed model successfully extracts clear and interpretable cluster structures from real-world relational data.

  • A Robust Depth Image Based Rendering Scheme for Stereoscopic View Synthesis with Adaptive Domain Transform Based Filtering Framework

    Wei LIU  Yun Qi TANG  Jian Wei DING  Ming Yue CUI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3138-3149

    Depth image based rendering (DIBR), which is utilized to render virtual views with a color image and the corresponding depth map, is one of the key procedures in the 2D to 3D conversion process. However, some troubling problems, such as depth edge misalignment, disocclusion occurrences and cracks at resampling, still exist in current DIBR systems. To solve these problems, in this paper, we present a robust depth image based rendering scheme for stereoscopic view synthesis. The cores of the proposed scheme are two depth map filters which share a common domain transform based filtering framework. As a first step, a filter of this framework is carried out to realize texture-depth boundary alignments and directional disocclusion reduction smoothing simultaneously. Then after depth map 3D warping, another adaptive filter is used on the warped depth maps with delivered scene gradient structures to further diminish the remaining cracks and noises. Finally, with the optimized depth map of the virtual view, backward texture warping is adopted to retrieve the final texture virtual view. The proposed scheme enables to yield visually satisfactory results for high quality 2D to 3D conversion. Experimental results demonstrate the excellent performances of the proposed approach.

281-300hit(2849hit)