The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ASE(2849hit)

61-80hit(2849hit)

  • Automorphism Shuffles for Graphs and Hypergraphs and Its Applications

    Kazumasa SHINAGAWA  Kengo MIYAMOTO  

     
    PAPER

      Pubricized:
    2022/09/12
      Vol:
    E106-A No:3
      Page(s):
    306-314

    In card-based cryptography, a deck of physical cards is used to achieve secure computation. A shuffle, which randomly permutes a card-sequence along with some probability distribution, ensures the security of a card-based protocol. The authors proposed a new class of shuffles called graph shuffles, which randomly permutes a card-sequence by an automorphism of a directed graph (New Generation Computing 2022). For a directed graph G with n vertices and m edges, such a shuffle could be implemented with pile-scramble shuffles with 2(n + m) cards. In this paper, we study graph shuffles and give an implementation, an application, and a slight generalization. First, we propose a new protocol for graph shuffles with 2n + m cards. Second, as a new application of graph shuffles, we show that any cyclic group shuffle, which is a shuffle over a cyclic group, is a graph shuffle associated with some graph. Third, we define a hypergraph shuffle, which is a shuffle by an automorphism of a hypergraph, and show that any hypergraph shuffle can also be implemented with pile-scramble shuffles.

  • A Computationally Efficient Card-Based Majority Voting Protocol with Fewer Cards in the Private Model

    Yoshiki ABE  Takeshi NAKAI  Yohei WATANABE  Mitsugu IWAMOTO  Kazuo OHTA  

     
    PAPER

      Pubricized:
    2022/10/20
      Vol:
    E106-A No:3
      Page(s):
    315-324

    Card-based cryptography realizes secure multiparty computation using physical cards. In 2018, Watanabe et al. proposed a card-based three-input majority voting protocol using three cards. In a card-based cryptographic protocol with n-bit inputs, it is known that a protocol using shuffles requires at least 2n cards. In contrast, as Watanabe et al.'s protocol, a protocol using private permutations can be constructed with fewer cards than the lower bounds above. Moreover, an n-input protocol using private permutations would not even require n cards in principle since a private permutation depending on an input can represent the input without using additional cards. However, there are only a few protocols with fewer than n cards. Recently, Abe et al. extended Watanabe et al.'s protocol and proposed an n-input majority voting protocol with n cards and n + ⌊n/2⌋ + 1 private permutations. This paper proposes an n-input majority voting protocol with ⌈n/2⌉ + 1 cards and 2n-1 private permutations, which is also obtained by extending Watanabe et al.'s protocol. Compared with Abe et al.'s protocol, although the number of private permutations increases by about n/2, the number of cards is reduced by about n/2. In addition, unlike Abe et al.'s protocol, our protocol includes Watanabe et al.'s protocol as a special case where n=3.

  • Orthogonal Variable Spreading Factor Codes Suppressing Signal-Envelope Fluctuation

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Hirokazu TANAKA  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2022/08/08
      Vol:
    E106-A No:3
      Page(s):
    445-449

    Recently, complex orthogonal variable spreading factor (OVSF) codes based on polyphase orthogonal codes have been proposed to support multi-user/multi-rate data transmission services in synchronous direct-sequence code-division multiple access (DS-CDMA) systems. This study investigates the low signal-envelope fluctuation property of the complex OVSF codes in terms of transmission signal trajectories. In addition, a new method is proposed to suppress the envelope fluctuation more strongly at the expense of reducing the number of spreading sequences of the codes.

  • New Construction of Z-Optimal Type-II Even-Length Quadriphase Z-Complementary Pairs

    Fanxin ZENG  Xiping HE  Zhenyu ZHANG  Li YAN  

     
    LETTER-Sequences

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:3
      Page(s):
    450-453

    Type-II Z-complementary pairs (ZCPs) play an important role in suppressing asynchronous interference in a wideband wireless communication system where the minimum interfering-signal delay is large. Based on binary Golay complementary pairs (BGCPs) and interleaving technique, new construction for producing Z-optimal Type-II even-length quadriphase ZCPs (EL-QZCPs) is presented, and the resultant pairs have new lengths in the form of 2 × 2α10β26γ (α, β, γ non-negative integers), which are not included in existing known Type-II EL-QZCPs.

  • Accurate Phase Angle Measurement of Backscatter Signal under Noisy Environment

    Tomoya IWASAKI  Osamu TOKUMASU  Jin MITSUGI  

     
    PAPER

      Pubricized:
    2022/09/15
      Vol:
    E106-A No:3
      Page(s):
    464-470

    Backscatter communication is an emerging wireless access technology to realize ultra-low power terminals exploiting the modulated reflection of incident radio wave. This paper proposes a method to measure the phase angle of backscatter link using principal component analysis (PCA). The phase angle measurement of backscatter link at the receiver is essential to maximize the signal quality for subsequent demodulation and to measure the distance and the angle of arrival. The drawback of popular phase angle measurement with naive phase averaging and linear regression analysis is to produce erroneous phase angle, where the phase angle is close to $pm rac{pi}{2}$ radian and the signal quality is poor. The advantage of the proposal is quantified with a computer simulation, a conducted experiment and radio propagation experiments.

  • Dynamic Verification Framework of Approximate Computing Circuits using Quality-Aware Coverage-Based Grey-Box Fuzzing

    Yutaka MASUDA  Yusei HONDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2022/09/02
      Vol:
    E106-A No:3
      Page(s):
    514-522

    Approximate computing (AC) has recently emerged as a promising approach to the energy-efficient design of digital systems. For realizing the practical AC design, we need to verify whether the designed circuit can operate correctly under various operating conditions. Namely, the verification needs to efficiently find fatal logic errors or timing errors that violate the constraint of computational quality. This work focuses on the verification where the computational results can be observed, the computational quality can be calculated from computational results, and the constraint of computational quality is given and defined as the constraint which is set to the computational quality of designed AC circuit with given workloads. Then, this paper proposes a novel dynamic verification framework of the AC circuit. The key idea of the proposed framework is to incorporate a quality assessment capability into the Coverage-based Grey-box Fuzzing (CGF). CGF is one of the most promising techniques in the research field of software security testing. By repeating (1) mutation of test patterns, (2) execution of the program under test (PUT), and (3) aggregation of coverage information and feedback to the next test pattern generation, CGF can explore the verification space quickly and automatically. On the other hand, CGF originally cannot consider the computational quality by itself. For overcoming this quality unawareness in CGF, the proposed framework additionally embeds the Design Under Verification (DUV) component into the calculation part of computational quality. Thanks to the DUV integration, the proposed framework realizes the quality-aware feedback loop in CGF and thus quickly enhances the verification coverage for test patterns that violate the quality constraint. In this work, we quantitatively compared the verification coverage of the approximate arithmetic circuits between the proposed framework and the random test. In a case study of an approximate multiply-accumulate (MAC) unit, we experimentally confirmed that the proposed framework achieved 3.85 to 10.36 times higher coverage than the random test.

  • A Novel Unambiguous Acquisition Algorithm Based on Segmentation Reconstruction for BOC(n,n) Signal Open Access

    Yuanfa JI  Sisi SONG  Xiyan SUN  Ning GUO  Youming LI  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/08/26
      Vol:
    E106-B No:3
      Page(s):
    287-295

    In order to improve the frequency band utilization and avoid mutual interference between signals, the BD3 satellite signals adopt Binary Offset Carrier (BOC) modulation. On one hand, BOC modulation has a narrow main peak width and strong anti-interference ability; on the other hand, the phenomenon of false acquisition locking caused by the multi-peak characteristic of BOC modulation itself needs to be resolved. In this context, this paper proposes a new BOC(n,n) unambiguous acquisition algorithm based on segmentation reconstruction. The algorithm is based on splitting the local BOC signal into four parts in each subcarrier period. The branch signal and the received signal are correlated with the received signal to generate four branch correlation signals. After a series of combined reconstructions, the final signal detection function completely eliminates secondary peaks. A simulation shows that the algorithm can completely eliminate the sub-peak interference for the BOC signals modulated by subcarriers with different phase. The characteristics of narrow correlation peak are retained. Experiments show that the proposed algorithm has superior performance in detection probability and peak-to-average ratio.

  • Split and Eliminate: A Region-Based Segmentation for Hardware Trojan Detection

    Ann Jelyn TIEMPO  Yong-Jin JEONG  

     
    PAPER-Dependable Computing

      Pubricized:
    2022/12/09
      Vol:
    E106-D No:3
      Page(s):
    349-356

    Using third-party intellectual properties (3PIP) has been a norm in IC design development process to meet the time-to-market demand and at the same time minimizing the cost. But this flow introduces a threat, such as hardware trojan, which may compromise the security and trustworthiness of underlying hardware, like disclosing confidential information, impeding normal execution and even permanent damage to the system. In years, different detections methods are explored, from just identifying if the circuit is infected with hardware trojan using conventional methods to applying machine learning where it identifies which nets are most likely are hardware trojans. But the performance is not satisfactory in terms of maximizing the detection rate and minimizing the false positive rate. In this paper, a new hardware trojan detection approach is proposed where gate-level netlist is segmented into regions first before analyzing which nets might be hardware trojans. The segmentation process depends on the nets' connectivity, more specifically by looking on each fanout points. Then, further analysis takes place by means of computing the structural similarity of each segmented region and differentiate hardware trojan nets from normal nets. Experimental results show 100% detection of hardware trojan nets inserted on each benchmark circuits and an overall average of 1.38% of false positive rates which resulted to a higher accuracy with an average of 99.31%.

  • Functional Connectivity and Small-World Networks in Prion Disease

    Chisho TAKEOKA  Toshimasa YAMAZAKI  Yoshiyuki KUROIWA  Kimihiro FUJINO  Toshiaki HIRAI  Hidehiro MIZUSAWA  

     
    LETTER-Biological Engineering

      Pubricized:
    2022/11/28
      Vol:
    E106-D No:3
      Page(s):
    427-430

    We characterized prion disease by comparing brain functional connectivity network (BFCN), which were constructed by 16-ch scalp-recorded electroencephalograms (EEGs). The connectivity between each pair of nodes (electrodes) were computed by synchronization likelihood (SL). The BFCN was applied to graph theory to discriminate prion disease patients from healthy elderlies and dementia groups.

  • A Study of Phase-Adjusting Architectures for Low-Phase-Noise Quadrature Voltage-Controlled Oscillators Open Access

    Mamoru UGAJIN  Yuya KAKEI  Nobuyuki ITOH  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/08/03
      Vol:
    E106-C No:2
      Page(s):
    59-66

    Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.

  • Learning in the Digital Age: Power of Shared Learning Logs to Support Sustainable Educational Practices

    Hiroaki OGATA  Rwitajit MAJUMDAR  Brendan FLANAGAN  

     
    INVITED PAPER

      Pubricized:
    2022/10/19
      Vol:
    E106-D No:2
      Page(s):
    101-109

    During the COVID-19 pandemic there was a rapid shift to emergency remote teaching practices and online tools for education have already gained further attention. While eLearning initiatives are developed and its implementation at scale are widely discussed, this research focuses on the utilization of data which can be logged in such eLearning systems. We demonstrate the need and potential of utilizing learning logs to create services supporting sustainable quality improvement of education. Learning and Evidence Analytics Framework (LEAF), is the overarching technology framework with affordances to adopt evidence-based practices for education. It aims to promote learning for all by introducing data-driven services for personalized approaches.

  • Radial Line Planar Phased Array Using Electromechanically Rotated Helical Antennas

    Narihiro NAKAMOTO  Yusuke SUZUKI  Satoshi YAMAGUCHI  Toru FUKASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  Naoki SHINOHARA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    174-183

    In this paper, we propose a novel radial line planar phased array in which helical antenna elements are individually rotated by their respective connected micromotors to realize dynamic beam-scanning. To our knowledge, this is the first radial line planar array (RLPA) that has antenna elements electromechanically rotated by their individual micromotors. To facilitate its fabrication, helix and its probe are directly metallized on a plastic shaft using molded interconnect device technology, and a motor shaft is press-fitted into the plastic shaft. We also present a new design methodology for RLPA, which combines the equivalent circuit theory and electromagnetic simulations of the unit cell element. The proposed procedure is practical to design an RLPA of antenna elements with arbitrary probe shape without large-scale full-wave analysis of the whole structure of the RLPA. We design, fabricate, and evaluate a 7-circle array with 168 helical antenna elements fabricated using molded interconnect device technology. The prototype antenna exhibits dynamic and accurate beam-scanning performance. Furthermore, the prototype antenna exhibits a low reflection coefficient (less than -17dB) and high antenna efficiency (above 77%), which validates the proposed design methodology.

  • Suppression Effect of Randomly-Disturbed LC Alignment Fluctuation on Speckle Noise for Electronic Holography Imaging Open Access

    Masatoshi YAITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Pubricized:
    2022/09/08
      Vol:
    E106-C No:2
      Page(s):
    26-33

    In this paper, we proposed the phase disturbing device using randomly-fluctuated liquid crystal (LC) alignment to reduce the speckle noise generated in holographic displays. Some parameters corresponding to the alignment fluctuation of thick LC layer were quantitatively evaluated, and we clarified the effect of the LC alignment fluctuation with the parameters on speckle noise reduction.

  • Design, Fabrication, and Evaluation of Waveguide Structure Using Si/CaF2 Heterostructure for Near- and Mid- Infrared Silicon Photonics

    Long LIU  Gensai TEI  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/07/08
      Vol:
    E106-C No:1
      Page(s):
    1-6

    We have proposed integrated waveguide structure suitable for mid- and near- infrared light propagation using Si and CaF2 heterostructures on Si substrate. Using a fabrication process based on etching, lithography and crystal growth techniques, we have formed a slab-waveguide structure with a current injection mechanism on a SOI substrate, which would be a key component for Si/CaF2 quantum cascade lasers and other optical integrated systems. The propagation of light at a wavelength of 1.55 µm through a Si/CaF2 waveguide structure have been demonstrated for the first time using a structure with a Si/CaF2 multilayered core with 610-nm-thick, waveguide width of 970 nm, which satisfies single-mode condition in the horizontal direction within a tolerance of fabrication accuracy. The waveguide loss for transverse magnetic (TM) mode has been evaluated to be 51.4 cm-1. The cause of the loss was discussed by estimating the edge roughness scattering and free carrier absorption, which suggests further reduction of the loss would be possible.

  • Faster Key Generation of Supersingular Isogeny Diffie-Hellman

    Kaizhan LIN  Fangguo ZHANG  Chang-An ZHAO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/05/30
      Vol:
    E105-A No:12
      Page(s):
    1551-1558

    Supersingular isogeny Diffie-Hellman (SIDH) is attractive for its relatively small public key size, but it is still unsatisfactory due to its efficiency, compared to other post-quantum proposals. In this paper, we focus on the performance of SIDH when the starting curve is E6 : y2 = x3 + 6x2 + x, which is fixed in Round-3 SIKE implementation. Inspired by previous works [1], [2], we present several tricks to accelerate key generation of SIDH and each process of SIKE. Our experimental results show that the performance of this work is at least 6.09% faster than that of the SIKE implementation, and we can further improve the performance when large storage is available.

  • MemFRCN: Few Shot Object Detection with Memorable Faster-RCNN

    TongWei LU  ShiHai JIA  Hao ZHANG  

     
    LETTER-Vision

      Pubricized:
    2022/05/24
      Vol:
    E105-A No:12
      Page(s):
    1626-1630

    At this stage, research in the field of Few-shot image classification (FSC) has made good progress, but there are still many difficulties in the field of Few-shot object detection (FSOD). Almost all of the current FSOD methods face catastrophic forgetting problems, which are manifested in that the accuracy of base class recognition will drop seriously when acquiring the ability to recognize Novel classes. And for many methods, the accuracy of the model will fall back as the class increases. To address this problem we propose a new memory-based method called Memorable Faster R-CNN (MemFRCN), which makes the model remember the categories it has already seen. Specifically, we propose a new tow-stage object detector consisting of a memory-based classifier (MemCla), a fully connected neural network classifier (FCC) and an adaptive fusion block (AdFus). The former stores the embedding vector of each category as memory, which enables the model to have memory capabilities to avoid catastrophic forgetting events. The final part fuses the outputs of FCC and MemCla, which can automatically adjust the fusion method of the model when the number of samples increases so that the model can achieve better performance under various conditions. Our method can perform well on unseen classes while maintaining the detection accuracy of seen classes. Experimental results demonstrate that our method outperforms other current methods on multiple benchmarks.

  • Functional Connectivity Estimation by Phase Synchronization and Information Flow Approaches in Coupled Chaotic Dynamical Systems

    Mayuna TOBE  Sou NOBUKAWA  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2022/06/03
      Vol:
    E105-A No:12
      Page(s):
    1604-1611

    Various types of indices for estimating functional connectivity have been developed over the years that have introduced effective approaches to discovering complex neural networks in the brain. Two significant examples are the phase lag index (PLI) and transfer entropy (TE). Both indices have specific benefits; PLI, defined using instantaneous phase dynamics, achieves high spatiotemporal resolution, whereas transfer entropy (TE), defined using information flow, reveals directed network characteristics. However, the relationship between these indices remains unclear. In this study, we hypothesize that there exists a complementary relationship between PLI and TE to discover new aspects of functional connectivity that cannot be detected using either PLI or TE. To validate this hypothesis, we evaluated the synchronization in a coupled Rössler model using PLI and TE. Consequently, we proved the existence of non-linear relationships between PLI and TE. Both indexes exhibit a specific trend that demonstrates a linear relationship in the region of small TE values. However, above a specific TE value, PLI converges to a constant irrespective of the TE value. In addition to this relational difference in synchronization, there is another characteristic difference between these indices. Moreover, by virtue of its finer temporal resolution, PLI can capture the temporal variability of the degree of synchronization, which is called dynamical functional connectivity. TE lacks this temporal characteristic because it requires a longer evaluation period in this estimation process. Therefore, combining the advantages of both indices might contribute to revealing complex spatiotemporal functional connectivity in brain activity.

  • A Rate-Based Congestion Control Method for NDN Using Sparse Explicit Rate Notification and AIMD-Based Rate Adjustment

    Takahiko KATO  Masaki BANDAI  

     
    PAPER-Network

      Pubricized:
    2022/06/09
      Vol:
    E105-B No:12
      Page(s):
    1519-1529

    In this paper, we propose a new rate-based congestion control method for Named Data Networking (NDN) using additive increase multiplicative decrease (AIMD) and explicit rate notification. In the proposed method, routers notify a corresponding consumer of bottleneck bandwidth by use of Data packets, in a relatively long interval. In addition, routers monitor outgoing faces using the leaky bucket mechanism. When congestion is detected, the routers report this to corresponding consumers using negative-acknowledgment (NACK) packets. A consumer sets its Interest sending rate to the reported rate when a new value is reported. In addition, the consumer adjusts the sending rate to be around the reported rate based on the AIMD mechanism at Data/NACK packet reception. Computer simulations show that the proposed method achieves a high throughput performance and max-min fairness thanks to the effective congestion avoidance.

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • A Multi-Tree Approach to Mutable Order-Preserving Encoding

    Seungkwang LEE  Nam-su JHO  

     
    LETTER

      Pubricized:
    2022/07/28
      Vol:
    E105-D No:11
      Page(s):
    1930-1933

    Order-preserving encryption using the hypergeomatric probability distribution leaks about the half bits of a plaintext and the distance between two arbitrary plaintexts. To solve these problems, Popa et al. proposed a mutable order-preserving encoding. This is a keyless encoding scheme that adopts an order-preserving index locating the corresponding ciphertext via tree-based data structures. Unfortunately, it has the following shortcomings. First, the frequency of the ciphertexts reveals that of the plaintexts. Second, the indices are highly correlated to the corresponding plaintexts. For these reasons, statistical cryptanalysis may identify the encrypted fields using public information. To overcome these limitations, we propose a multi-tree approach to the mutable order-preserving encoding. The cost of interactions increases by the increased number of trees, but the proposed scheme mitigates the distribution leakage of plaintexts and also reduces the problematic correlation to plaintexts.

61-80hit(2849hit)