The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

13641-13660hit(20498hit)

  • Wide-Input Range Variable Resistor Circuit Using an FG-MOSFET

    Muneo KUSHIMA  Koichi TANNO  Okihiko ISHIZUKA  

     
    LETTER-Analog Signal Processing

      Vol:
    E86-A No:12
      Page(s):
    3294-3296

    In this letter, a linear variable resistor circuit using an FG-MOSFET (floating-gate MOSFET) is proposed. This is based on Schlarmann's variable resistor and is very simple. The advantage of the proposed circuit is a wide-input range. The utility of the proposed circuit was confirmed by HSPICE simulation with 1.2 µm CMOS process parameters. The simulation results are reported in this letter.

  • Numerical Simulation for Interstitial Heating of Actual Neck Tumor Based on MRI Tomograms by Using a Coaxial-Slot Antenna

    Kazuyuki SAITO  Hiroyuki YOSHIMURA  Koichi ITO  

     
    PAPER-Medical Application

      Vol:
    E86-C No:12
      Page(s):
    2482-2487

    Hyperthermia is one of the modalities for cancer treatment, utilizing the difference of thermal sensitivity between tumor and normal tissue. In this treatment, the tumor or target cancer cell is heated up to the therapeutic temperature between 42 and 45 without overheating the surrounding normal tissues. Particularly, the authors have been studying the coaxial-slot antenna for interstitial microwave hyperthermia. At that time, we analyzed the heating characteristics of the coaxial-slot antenna under the assumption that the human body is a homogeneous medium. In this paper, we analyzed the heating characteristics of the coaxial-slot antenna inside an actual neck tumor by using numerical calculations. The models of calculations consist of MRI tomograms of an actual patient. As a result of the calculations, we observed almost uniform temperature distributions inside the human body including the actual neck tumor, which are similar to the results obtained for a homogeneous medium.

  • Moment Computations of Lumped Coupled RLC Trees with Applications to Estimating Crosstalk Noise

    Herng-Jer LEE  Chia-Chi CHU  Wu-Shiung FENG  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2952-2964

    A novel method is presented to compute moments of high-speed VLSI interconnects, which are modeled as coupled RLC trees. Recursive formulae of moments of coupled RC trees are extended to those for coupled RLC trees by considering both self inductances and mutual inductances. Analytical formulae for voltage moments at each node are derived explicitly. The formulae can be efficiently used for estimating delay and crosstalk noise. The inductive crosstalk noise waveform can be accurately and efficiently estimated using the moment computation technique in conjunction with the projection-based order reduction method. Fundamental aspects of the proposed approach are described in details. Experimental results show the increased accuracy of the proposed method over that of the traditional ones.

  • Measurement of Early Reflections in a Room with Five Microphone System

    Chulmin CHOI  Lae-Hoon KIM  Yangki OH  Sejin DOO  Koeng-Mo SUNG  

     
    LETTER-Engineering Acoustics

      Vol:
    E86-A No:12
      Page(s):
    3283-3287

    The measurement of the 3-dimensional behavior of early reflections in a sound field has been an important issue in auditorium acoustics since the reflection profile has been found to be strongly correlated with the subjective responsiveness of a listener. In order to detect the incidence angle and relative amplitude of reflections, a 4-point microphone system has conventionally been used. A new measurement system is proposed in this paper, which has 5 microphones. Microphones are located on each four apex of a tetrahedron and at the center of gravity. Early reflections, including simultaneously incident reflections,which previous 4-point microphone system could not discriminate as individual wavefronts, were successfully found with the new system. In order to calculate accurate image source positions, it is necessary to determine the exact peak positions from measured impulse responses composed of highly deformed and overlapped impulse trains. For this purpose, a peak-detecting algorithm, which finds dominant peaks in the impulse response by an iteration method, is introduced. In this paper, the theoretical background and features of the 5-microphone system are described. Also, some results of experiments using this system are described.

  • A Novel Learning Algorithm Which Makes Multilayer Neural Networks Multiple-Weight-Fault Tolerant

    Itsuo TAKANAMI  Yasuhiro OYAMA  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2536-2543

    We propose an efficient algorithm for making multi-layered neural networks (MLN) fault-tolerant to all multiple weight faults in a multi-dimensional interval by injecting intentionally two extreme multi-dimensional values in the interval into the weights of the selected multiple links in a learning phase. The degree of fault-tolerance to a multiple weight fault is measured by the number of essential multiple links. First, we analytically discuss how to choose effectively the multiple links to be injected, and present a learning algorithm for making MLNs fault tolerant to all multiple (i.e., simultaneous) faults in the interval defined by two multi-dimensional extreme points. Then it is proved that after the learning algorithm successfully finishes, MLNs become fault tolerant to all multiple faults in the interval. It is also shown that the time in a weight modification cycle depends little on multiplicity of faults k for small k. These are confirmed by simulation.

  • Parasitic Capacitance Modeling for Non-Planar Interconnects in Liquid Crystal Displays

    Sadahiro TANI  Yoshihiro UCHIDA  Makoto FURUIE  Shuji TSUKIYAMA  BuYeol LEE  Shuji NISHI  Yasushi KUBOTA  Isao SHIRAKAWA  Shigeki IMAI  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2923-2932

    The problem of calculating parasitic capacitances between two interconnects is investigated dedicatedly for liquid crystal displays, with the main focus put on the approximate expressions of the capacitances caused at the intersection and the parallel running of two interconnects. To derive simple and accurate approximate expressions, the interconnects in these structures are divided into a few basic coupling regions in such a way that the electro-magnetic field in each region can be calculated by a 2-D capacitance model. Then the capacitance in such a region is represented by a simple expression adjusted to the results computed by an electro-magnetic field solver. The total capacitance obtained by summing the capacitances in all regions is evaluated in comparison with the one obtained by using a 3-D field solver, resulting in a relative error of less than 5%.

  • A Self-Adjusting Destage Algorithm with High-Low Water Mark in Cached RAID5

    Young Jin NAM  Chanik PARK  

     
    PAPER-Dependable Systems

      Vol:
    E86-D No:12
      Page(s):
    2527-2535

    The High-Low Water Mark destage (HLWM) algorithm is widely used to enable cached RAID5 to flush dirty data from its write cache to disks due to the simplicity of its operations. It starts and stops a destaging process based on the two thresholds that are configured at the initialization time with the best knowledge of its underlying storage performance capability and its workload pattern which includes traffic intensity, access patterns, etc. However, each time the current workload varies from the original, the thresholds need to be re-configured with the changed workload. This paper proposes an efficient destage algorithm which automatically re-configures its initial thresholds according to the changed traffic intensity and access patterns, called adaptive thresholding. The core of adaptive thresholding is to define the two thresholds as the multiplication of the referenced increasing and decreasing rates of the write cache occupancy level and the time required to fill and empty the write cache. We implement the proposed algorithm upon an actual RAID system and then verify the ability of the auto-reconfiguration with synthetic workloads having a different level of traffic intensity and access patterns. Performance evaluations under well-known traced workloads reveal that the proposed algorithm reduces disk IO traffic by about 12% with a 6% increase in the overwrite ratio compared with the HLWM algorithm.

  • Development of Experimental Prototype System for SDR Certification Simulation

    Yasuo SUZUKI  Tokihiko YOKOI  Yoshimitsu IKI  Eiji KAWAGUCHI  Nobuo NAKAJIMA  Koji ODA  Ryoichi HIDAKA  

     
    PAPER

      Vol:
    E86-B No:12
      Page(s):
    3408-3416

    In relation to the Software Defined Radio (SDR) concept, an experimental simulation system was developed. Likewise, verification tests were performed in order to validate the envisaged SDR certification processes including its development, certification, distribution, and software installation assuming the future possibility of exchanging the software in the field.

  • Crosstalk Noise Estimation for Generic RC Trees

    Masanori HASHIMOTO  Masao TAKAHASHI  Hidetoshi ONODERA  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2965-2973

    We propose an estimation method of crosstalk noise for generic RC trees. The proposed method derives an analytic waveform of crosstalk noise in a 2-π equivalent circuit. The peak voltage is calculated from the closed-form expression. We also develop a transformation method from generic RC trees with branches into the 2-π model circuit. The proposed method can hence estimate crosstalk noise for any RC trees. Our estimation method is evaluated in a 0.13 µm technology. The peak noise of two partially-coupled interconnects is estimated with the average error of 11%. Our method transforms generic RC interconnects with branches into the 2-π model with 14% error on average.

  • Efficient DDD-Based Interpretable Symbolic Characterization of Large Analog Circuits

    Sheldon X.-D. TAN  C.-J. Richard SHI  

     
    PAPER-Analog Design

      Vol:
    E86-A No:12
      Page(s):
    3110-3118

    A systematic and efficient approach is presented to generating simple yet accurate symbolic expressions for transfer functions and characteristics of large linear analog circuits. The approach is based on a compact determinant decision diagram (DDD) representation of exact transfer functions and characteristics. Several key tasks of generating interpretable symbolic expressions--DDD graph simplification, term de-cancellation, and dominant-term generation--are shown to be able to perform linearly by means of DDD graph operations. An efficient algorithm for generating dominant terms is presented based on the concepts of finding the k-shortest paths in a DDD graph. Experimental results show that our approach outperforms other start-of-the-art approaches, and is capable of generating interpretable expressions for typical analog blocks in minutes on modern computer workstations.

  • Computation of the Peak of Time Response in the Form of Formal Power Series

    Takuya KITAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E86-A No:12
      Page(s):
    3240-3250

    Suppose that we need to design a controller for the system x(t) = A x(t) + B u, u = -K x(t), y(t) = C x(t), where matrices A, B and C are given and K is the matrix to to determine. It is required to determine K so that y(t) should not exceed prescribed value (i.e., the peak of output y(t) is limited). This kind of specification, in general, difficult to satisfy, since the peak ymax of y(t) (we define ymax to be max0 t |y(t)|) is a non-trivial function of design parameter K, which can not be expressed explicitly generally. Therefore, a controller design with such specifications often requires try and error process. In this paper, we approximate ymax in the form of formal power series and give an efficient algorithm to compute the series. We also give a design example of a control system as an application of the algorithm.

  • Bit Length Optimization of Fractional Part on Floating to Fixed Point Conversion for High-Level Synthesis

    Nobuhiro DOI  Takashi HORIYAMA  Masaki NAKANISHI  Shinji KIMURA  Katsumasa WATANABE  

     
    PAPER-Logic and High Level Synthesis

      Vol:
    E86-A No:12
      Page(s):
    3184-3191

    In the hardware synthesis from a high-level language such as C, the bit length of variables is one of the key issues for the area and speed optimization. Usually, designers are required to optimize the bit-length of each variable manually using the time-consuming simulation on huge-data. In this paper, we propose an optimization method of the fractional bit length in the conversion from floating-point variables to fixed-point variables. The method is based on error propagation and the backward propagation of the accuracy limitation. The method is fully analytical and fast compared to simulation based methods.

  • A Call-by-Need Recursive Algorithm for the LogMAP Decoding of a Binary Linear Block Code

    Toshiyuki ISHIDA  Yuichi KAJI  

     
    LETTER-Information Theory

      Vol:
    E86-A No:12
      Page(s):
    3306-3309

    A new algorithm for the LogMAP decoding of linear block codes is considered. The decoding complexity is evaluated analytically and by computer simulation. The proposed algorithm is an improvement of the recursive LogMAP algorithm proposed by the authors. The recursive LogMAP algorithm is more efficient than the BCJR algorithm for low-rate codes, but the complexity grows considerably large for high-rate codes. The aim of the proposed algorithm is to solve the complexity explosion of the recursive LogMAP algorithm for high-rate codes. The proposed algorithm is more efficient than the BCJR algorithm for well-known linear block codes.

  • Implementation of Java Accelerator for High-Performance Embedded Systems

    Motoki KIMURA  Morgan Hirosuke MIKI  Takao ONOYE  Isao SHIRAKAWA  

     
    PAPER-Simulation Accelerator

      Vol:
    E86-A No:12
      Page(s):
    3079-3088

    A Java execution environment is implemented, in which a hardware engine is operated in parallel with an embedded processor. This pair of hardware facilities together with an additional software kernel are devised for existing embedded systems, so as to execute Java applications more efficiently in such a way that 39 instructions are added to the original Java Virtual Machine to implement the software kernel. The exploration of design parameters is also attempted to attain a low hardware cost and high performance. The proposed hardware engine of a 6-stage pipeline can be integrated in a single chip using 30 k gates together with the instruction and data cache memories. The proposed approach improves the execution speed by a factor of 5 in comparison with the J2ME software implementation.

  • Color Transfer between Images Based on Basic Color Category

    Youngha CHANG  Suguru SAITO  Masayuki NAKAJIMA  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:12
      Page(s):
    2780-2785

    Usually, paintings are more appealing than photographic images. This is because paintings can incorporate styles based on the artist's subjective view of motif. This style can be distinguished by looking at elements such as motif, color, shape deformation and brush texture. In our work, we focus on the effect of "color" element and devise a method for transforming the color of an input photograph according to a reference painting. To do this, we consider basic color category concepts in the color transformation process. We assume that color transformations from one basic color category to another may cause peculiar feelings. Therefore, we restrict each color transformation within the same basic color category. For this, our algorithm first categorizes each pixel color of a photograph into one of eleven basic color categories. Next, for every pixel color of the photograph, the algorithm finds its corresponding color in the same category of a reference painting. Finally, the algorithm substitutes the pixel color with its corresponding color. In this way, we achieve large but natural color transformations of an image.

  • Constrained Location Algorithm Using TDOA Measurements

    Hing Cheung SO  Shun Ping HUI  

     
    LETTER-Digital Signal Processing

      Vol:
    E86-A No:12
      Page(s):
    3291-3293

    One conventional technique for source localization is to utilize the time-difference-of-arrival (TDOA) measurements of a signal received at spatially separated sensors. A simple TDOA-based location algorithm that combines the advantages of two efficient positioning methods is developed. It is demonstrated that the proposed approach can give optimum performance in geolocation via satellites at different noise conditions.

  • Critical Path Selection for Deep Sub-Micron Delay Test and Timing Validation

    Jing-Jia LIOU  Li-C. WANG  Angela KRSTIĆ  Kwang-Ting (Tim) CHENG  

     
    PAPER-Timing Verification and Test Generation

      Vol:
    E86-A No:12
      Page(s):
    3038-3048

    Critical path selection is an indispensable step for AC delay test and timing validation. Traditionally, this step relies on the construction of a set of worse-case paths based upon discrete timing models. However, the assumption of discrete timing models can be invalidated by timing defects and process variation in the deep sub-micron domain, which are often continuous in nature. As a result, critical paths defined in a traditional timing analysis approach may not be truly critical in reality. In this paper, we propose using a statistical delay evaluation framework for estimating the quality of a path set. Based upon the new framework, we demonstrate how the traditional definition of a critical path set may deviate from the true critical path set in the deep sub-micron domain. To remedy the problem, we discuss improvements to the existing path selection strategies by including new objectives. We then compare statistical approaches with traditional approaches based upon experimental analysis of both defect-free and defect-injected cases.

  • A Novel Timing-Driven Global Routing Algorithm Considering Coupling Effects for High Performance Circuit Design

    Jingyu XU  Xianlong HONG  Tong JING  Yici CAI  Jun GU  

     
    PAPER-Place and Routing

      Vol:
    E86-A No:12
      Page(s):
    3158-3167

    As the CMOS technology enters the very deep submicron era, inter-wire coupling capacitance becomes the dominant part of load capacitance. The coupling effects have brought new challenges to routing algorithms on both delay estimation and optimization. In this paper, we propose a timing-driven global routing algorithm with consideration of coupling effects. Our two-phase algorithm based on timing-relax method includes a heuristic Steiner tree algorithm to guarantee the timing performance of the initial solution and an optimization algorithm based on coupling-effect-transference. Experimental results are given to demonstrate the efficiency and accuracy of the algorithm.

  • Linear Prediction Based Channel Estimation Using Pilot and Traffic Channels in Multi-Code CDMA Systems

    Jung Suk JOO  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:12
      Page(s):
    3551-3558

    For the channel estimation in the pilot channel aided CDMA systems which can support a multi-code scheme, we consider a linear prediction using both pilot and traffic channels. After deriving a new form of the optimal Wiener filter which requires less computational load, for its practical implementation, we propose the decision-directed adaptive linear prediction filter (DD-ALPF). To prevent from falling into the false lock, the proposed DD-ALPF uses the conventional channel estimate obtained only from pilot channel as a baseline for checking the reliability of the filter output. It will be shown through computer simulation that the proposed method can improve the receiver performance and performs better in the fast fading environments, compared with the existing ones.

  • Cached Shortest-Path Tree: An Approach to Reduce the Influence of Intra-Domain Routing Instability

    Shu ZHANG  Katsuyoshi IIDA  Suguru YAMAGUCHI  

     
    PAPER-Network

      Vol:
    E86-B No:12
      Page(s):
    3590-3599

    Because most link-state routing protocols, such as OSPF and IS-IS, calculate routes using the Dijkstra algorithm, which poses scalability problems, implementors often introduce an artificial delay to reduce the number of route calculations. Although this delay directly affects IP packet forwarding, it can be acceptable when the network topology does not change often. However, when the topology of a network changes frequently, this delay can lead to a complete loss of IP reachability for the affected network prefixes during the unstable period. In this paper, we propose the Cached Shortest-path Tree (CST) approach, which speeds up intra-domain routing convergence without extra execution of the Dijkstra algorithm, even if the routing for a network is quite unstable. The basic idea of CST is to cache shortest-path trees (SPTs) of network topologies that appear frequently, and use these SPTs to instantly generate a routing table when the topology after a change matches one in the caches. CST depends on a characteristic that we found from an investigation of routing instability conducted on the WIDE Internet in Japan. That is, under unstable routing conditions, both frequently changing Link State Advertisements (LSAs) and their instances tend to be limited. At the end of this paper, we show CST's effectiveness by a trace-driven simulation.

13641-13660hit(20498hit)