The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Cu(4258hit)

841-860hit(4258hit)

  • Broadband Circularly Polarized Stacked Patch Antenna for Universal UHF RFID Applications Open Access

    Chih-Chiang CHEN  Bo-Shau CHEN  Chow-Yen-Desmond SIM  

     
    INVITED PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    2-8

    A double layer stacked patch antenna with a size of 200×200×48mm3 is proposed in this investigation. To achieve a broad CP bandwidth that can cover universal UHF RFID applications (840-960MHz), a slot loaded circular patch antenna fed by an L-shaped probe is designed as the lower layer (main patch), while the top layer (parasitic patch) is a simple circular patch loaded with a cross-slot of dissimilar arm lengths. Besides demonstrating a broad 10-dB return loss bandwidth of 16% (823-966MHz) and a CP bandwidth (3-dB axial ratio) of 14.0% (837-963MHz), the proposed antenna also yields maximum gain and minimum radiation efficiency of 8.8dBic and 85%, respectively, across the universal UHF RFID bands.

  • In-Vehicle Network Security Using Secure Element

    Keisuke TAKEMORI  Seiichiro MIZOGUCHI  Hideaki KAWABATA  Ayumu KUBOTA  

     
    INVITED PAPER

      Vol:
    E99-A No:1
      Page(s):
    208-216

    As there are no security mechanisms in the vehicle controller area network (CAN) protocol, it is easy to inject fake packets, codes and electric control units (ECUs) in the CAN to hijack vehicle control. Security countermeasures for both the CAN and the ECU are urgently required to improve driving safety. In this paper, we propose in-vehicle network securities using the hardware secure elements as follows: (i) secure boot of ECU, (ii) authentication of an ECU, (iii) authentication of a CAN packet, and (iv) cipher key exchange procedures from a master ECU to slave ECUs. The security algorithms are implemented in a subscriber identity module card (SIM) embedded in the master ECU's board and in a hardware security module (HSM) embedded in a slave ECU. The SIM generates and distributes cipher keys to the authenticated HSM. Then, the HSM generates a media authentication code (MAC) for the CAN packet by using the cipher keys.

  • Cryptanalysis and Improvement of a Provably Secure RFID Ownership Transfer Protocol

    Daisuke MORIYAMA  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    130-138

    Radio Frequency Identifications (RFID) are useful low-cost devices for identification or authentication systems through wireless communication. The ownership of the RFID tag is frequently changed in the life cycle of the tag, it may fall in to the hands of a malicious adversary. The privacy problem in this situation is studied in the RFID ownership transfer protocol. However, almost all previous works provide only heuristic analysis and many protocols are broken. Elkhiyaoui et al. defined the security model for RFID ownership transfer protocols and proposed the detailed security proof to their protocol, but we show that their protocol does not provide enough privacy and cover the realistic attack. We investigate a suitable security model for RFID ownership transfer protocols and provide a new provably secure RFID ownership transfer protocol.

  • Multi-Feature Guided Brain Tumor Segmentation Based on Magnetic Resonance Images

    Ye AI  Feng MIAO  Qingmao HU  Weifeng LI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/08/25
      Vol:
    E98-D No:12
      Page(s):
    2250-2256

    In this paper, a novel method of high-grade brain tumor segmentation from multi-sequence magnetic resonance images is presented. Firstly, a Gaussian mixture model (GMM) is introduced to derive an initial posterior probability by fitting the fluid attenuation inversion recovery histogram. Secondly, some grayscale and region properties are extracted from different sequences. Thirdly, grayscale and region characteristics with different weights are proposed to adjust the posterior probability. Finally, a cost function based on the posterior probability and neighborhood information is formulated and optimized via graph cut. Experiment results on a public dataset with 20 high-grade brain tumor patient images show the proposed method could achieve a dice coefficient of 78%, which is higher than the standard graph cut algorithm without a probability-adjusting step or some other cost function-based methods.

  • Supervised SOM Based ATR Method with Circular Polarization Basis of Full Polarimetric Data

    Shouhei OHNO  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E98-B No:12
      Page(s):
    2520-2527

    Satellite-borne or aircraft-borne synthetic aperture radar (SAR) is useful for high resolution imaging analysis for terrain surface monitoring or surveillance, particularly in optically harsh environments. For surveillance application, there are various approaches for automatic target recognition (ATR) of SAR images aiming at monitoring unidentified ships or aircraft. In addition, various types of analyses for full polarimetric data have been developed recently because it can provide significant information to identify structure of targets, such as vegetation, urban, sea surface areas. ATR generally consists of two processes, one is target feature extraction including target area determination, and the other is classification. In this paper, we propose novel methods for these two processes that suit full polarimetric exploitation. As the target area extraction method, we introduce a peak signal-to noise ratio (PSNR) based synthesis with full polarimetric SAR images. As the classification method, the circular polarization basis conversion is adopted to improve the robustness especially to variation of target rotation angles. Experiments on a 1/100 scale model of X-band SAR, demonstrate that our proposed method significantly improves the accuracy of target area extraction and classification, even in noisy or target rotating situations.

  • A Verification Method for Single-Flux-Quantum Circuits Using Delay-Based Time Frame Model

    Takahiro KAWAGUCHI  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E98-A No:12
      Page(s):
    2556-2564

    Superconducting single-flux-quantum (SFQ) device is an emerging device which can realize digital circuits with high switching speed and low power consumption. In SFQ digital circuits, voltage pulses are used for carrier of information, and the representation of logic values is different from that of CMOS circuits. Design methods exclusive to SFQ circuits have been developed. In this paper, we present timing analysis and functional verification methods for SFQ circuits based on new timing model which we call delay-based time frame model. Assuming that possible pulse arrival is periodic, the model defines comprehensive time frames and representation of logic values. In static timing analysis, expected pulse arrival time is checked based on the model, and the order among pulse arrival times is calculated for each logic gate. In functional verification, the circuit behavior is abstracted in a form similar to a synchronous sequential circuit using the order of pulse arrival times, and then the behavior is verified using formal verification tools. Using our proposed methods, we can verify the functional behavior of SFQ circuits with complex clocking scheme, which appear often in practical design but cannot be dealt with in existing verification method. Experimental results show that our method can be applied to practical designs.

  • Photonic Millimeter Wave Transmitter for a Real-Time Coherent Wireless Link Based on Injection Locking of Integrated Laser Diodes

    Shintaro HISATAKE  Guillermo CARPINTERO  Yasuyuki YOSHIMIZU  Yusuke MINAMIKATA  Kazuki OOGIMOTO  Yu YASUDA  Frédéric van DIJK  Tolga TEKIN  Tadao NAGATSUMA  

     
    PAPER

      Vol:
    E98-C No:12
      Page(s):
    1105-1111

    We propose the concept of an integrated coherent photonic wireless transmitter based on the simultaneous injection locking of two monolithically integrated distributed feedback (DFB) laser diodes (LDs) using an optical frequency comb (OFC). We characterize the basic operation of the transmitter and demonstrate that two injection-locked integrated DFB LDs are sufficiently stable to generate the carrier signal using a uni-traveling-carrier photodiode (UTC-PD) for a real-time error-free (bit error rate: BER < 10-11) coherent transmission with a data rate of 10 Gbit/s at a carrier frequency of 97 GHz. In the coherent wireless transmission, we compare the BER characteristics of the injection-locked transmitter with that of an actively phase-stabilized transmitter and show that the power penalty of 8-dB for the injection-locked transmitter is due to the RF spurious components, which can be reduced by integrating the OFC generator (OFCG) and LDs on the same chip. Our results suggest that the integration of the OFCG, DFB LDs, modulators, semiconductor optical amplifiers, and UTC-PD on the same chip is a promising strategy to develop a practical real-time ultrafast coherent millimeter/terahertz wave wireless transmitter.

  • On Finding Secure Domain Parameters Resistant to Cheon's Algorithm

    SeongHan SHIN  Kazukuni KOBARA  Hideki IMAI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:12
      Page(s):
    2456-2470

    In the literature, many cryptosystems have been proposed to be secure under the Strong Diffie-Hellman (SDH) and related problems. For example, there is a cryptosystem that is based on the SDH/related problem or allows the Diffie-Hellman oracle. If the cryptosystem employs general domain parameters, this leads to a significant security loss caused by Cheon's algorithm [14], [15]. However, all elliptic curve domain parameters explicitly recommended in the standards (e.g., ANSI X9.62/63 [1], [2], FIPS PUB 186-4 [43], SEC 2 [50], [51]) are susceptible to Cheon's algorithm [14], [15]. In this paper, we first prove that (q-1)(q+1) is always divisible by 24 for any prime order q>3. Based on this result and depending on small divisors d1,d2≤(log q)2, we classify primes q>3, such that both (q-1)/d1 and (q+1)/d2 are primes, into Perfect, Semiperfect, SEC1v2 and Acceptable. Then, we describe algorithmic procedures and show their simulation results of secure elliptic curve domain parameters over prime/character 2 finite fields resistant to Cheon's algorithm [14], [15]. Also, several examples of the secure elliptic curve domain parameters (including Perfect or Semiperfect prime q) are followed.

  • Using Correlated Regression Models to Calculate Cumulative Attributes for Age Estimation

    Lili PAN  Qiangsen HE  Yali ZHENG  Mei XIE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/08/28
      Vol:
    E98-D No:12
      Page(s):
    2349-2352

    Facial age estimation requires accurately capturing the mapping relationship between facial features and corresponding ages, so as to precisely estimate ages for new input facial images. Previous works usually use one-layer regression model to learn this complex mapping relationship, resulting in low estimation accuracy. In this letter, we propose a new gender-specific regression model with a two-layer structure for more accurate age estimation. Different from recent two-layer models that use a global regressor to calculate cumulative attributes (CA) and use CA to estimate age, we use gender-specific ones to calculate CA with more flexibility and precision. Extensive experimental results on FG-NET and Morph 2 datasets demonstrate the superiority of our method over other state-of-the-art age estimation methods.

  • Moiré Reduction Using Inflection Point and Color Variation in Digital Camera of No Optical Low Pass Filter

    Dae-Chul KIM  Wang-Jun KYUNG  Ho-Gun HA  Yeong-Ho HA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/09/10
      Vol:
    E98-D No:12
      Page(s):
    2290-2298

    The role of an optical low-pass filter (OLPF) in a digital still camera is to remove the high spatial frequencies that cause aliasing, thereby enhancing the image quality. However, this also causes some loss of detail. Yet, when an image is captured without the OLPF, moiré generally appears in the high spatial frequency region of the image. Accordingly, this paper presents a moiré reduction method that allows omission of the OLPF. Since most digital still cameras use a CCD or a CMOS with a Bayer pattern, moiré patterns and color artifacts are simultaneously induced by aliasing at high spatial frequencies. Therefore, in this study, moiré reduction is performed in both the luminance channel to remove the moiré patterns and the color channel to reduce color smearing. To detect the moiré patterns, the spatial frequency response (SFR) of the camera is first analyzed. The moiré regions are identified using patterns related to the SFR of the camera and then analyzed in the frequency domain. The moiré patterns are reduced by removing their frequency components, represented by the inflection point between the high-frequency and DC components in the moiré region. To reduce the color smearing, color changing regions are detected using the color variation ratios for the RGB channels and then corrected by multiplying with the average surrounding colors. Experiments confirm that the proposed method is able to reduce the moiré in both the luminance and color channels, while also preserving the detail.

  • Data-Transfer-Aware Design of an FPGA-Based Heterogeneous Multicore Platform with Custom Accelerators

    Yasuhiro TAKEI  Hasitha Muthumala WAIDYASOORIYA  Masanori HARIYAMA  Michitaka KAMEYAMA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E98-A No:12
      Page(s):
    2658-2669

    For an FPGA-based heterogeneous multicore platform, we present the design methodology to reduce the total processing time considering data-transfer. The reconfigurability of recent FPGAs with hard CPU cores allows us to realize a single-chip heterogeneous processor optimized for a given application. The major problem in designing such heterogeneous processors is data-transfer between CPU cores and accelerator cores. The total processing time with data-transfers is modeled considering the overlap of computation time and data-transfer time, and optimal design parameters are searched for.

  • A Current-Mirror-Based GaAs-HBT RF Power Detector Suitable for Base Terminal Monitoring in an HBT Power Stage

    Kazuya YAMAMOTO  Hitoshi KURUSU  Miyo MIYASHTA  Satoshi SUZUKI  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:12
      Page(s):
    1150-1160

    This paper describes the circuit design and measurement results of a new GaAs-HBT RF power detector proposed for use in WiMAX and wireless LAN transmitter applications. The detector, which is based on a simple current-mirror topology, occupies a small die area. It is, therefore, not only easy to implement together with a GaAs-HBT power amplifier, but can also offer approximately logarithmic (linear-in-dB) characteristics. Because it can also be driven with small voltage amplitudes, it is suitable for base-terminal monitoring at an HBT power stage. When the detector is used as a base-terminal power monitor, an appropriate base resistance added to the detection HBT effectively suppresses frequency dispersion of the detected voltage characteristics. Measurements of a prototype detector incorporated into a single-stage HBT power amplifier fabricated on the same die are as follows. The detector is capable of delivering a detected voltage of 0.35-2.5 V with a slope of less than 0.17 V/dB over a 4-to-24-dBm output power range at 3.5 GHz while drawing a current of less than 1.8 mA from a 2.85-V supply. While satisfying a log conformance error of less than 1 dB over an amplifier output power range from 4 dBm to 24 dBm, it can also suppress the detected power dispersion within 0.18 dB at approximately 15 dBm of output power over a 3.1-3.9-GHz-wide frequency range. This dispersion value is approximately one-tenth that of a conventional collector-terminal-monitor-type diode detector.

  • A Self-Recoverable, Frequency-Aware and Cost-Effective Robust Latch Design for Nanoscale CMOS Technology

    Aibin YAN  Huaguo LIANG  Zhengfeng HUANG  Cuiyun JIANG  Maoxiang YI  

     
    PAPER-Electronic Circuits

      Vol:
    E98-C No:12
      Page(s):
    1171-1178

    In this paper, a self-recoverable, frequency-aware and cost-effective robust latch (referred to as RFC) is proposed in 45nm CMOS technology. By means of triple mutually feedback Muller C-elements, the internal nodes and output node of the latch are self-recoverable from single event upset (SEU), i.e. particle striking induced logic upset, regardless of the energy of the striking particle. The proposed robust latch offers a much wider spectrum of working clock frequency on account of a smaller delay and insensitivity to high impedance state. The proposed robust latch performs with lower costs regarding power and area than most of the compared latches. SPICE simulation results demonstrate that the area-power-delay product is 73.74% saving on average compared with previous radiation hardened latches.

  • Novel DEM Technique for Current-Steering DAC in 65-nm CMOS Technology

    Yuan WANG  Wei SU  Guangliang GUO  Xing ZHANG  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E98-C No:12
      Page(s):
    1193-1195

    A novel dynamic element matching (DEM) method, called binary-tree random DEM (BTR-DEM), is presented for a Nyquist-rate current-steering digital-to-analog converter (DAC). By increasing or decreasing the number of unit current sources randomly at the same time, the BTR-DEM encoding reduces switch transition glitches. A 5-bit current-steering DAC with the BTR-DEM technique is implemented in a 65-nm CMOS technology. The measured spurious free dynamic range (SFDR) attains 42 dB for a sample rate of 100 MHz and shows little dependence on signal frequency.

  • High Efficiency CU Depth Prediction Algorithm for High Resolution Applications of HEVC

    Xiantao JIANG  Tian SONG  Wen SHI  Takashi SHIMAMOTO  Lisheng WANG  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2528-2536

    The purpose of this work is to reduce the redundant coding process with the tradeoff between the encoding complexity and coding efficiency in HEVC, especially for high resolution applications. Therefore, a CU depth prediction algorithm is proposed for motion estimation process of HEVC. At first, an efficient CTU depth prediction algorithm is proposed to reduce redundant depth. Then, CU size termination and skip algorithm is proposed based on the neighboring block depth and motion consistency. Finally, the overall algorithm, which has excellent complexity reduction performance for high resolution application is proposed. Moreover, the proposed method achieves steady performance, and it can significantly reduce the encoding time in different environment configuration and quantization parameter. The simulation experiment results demonstrate that, in the RA case, the average time saving is about 56% with only 0.79% BD-bitrate loss for the high resolution, and this performance is better than the previous state of the art work.

  • Complete Cycle Embedding in Crossed Cubes with Two-Disjoint-Cycle-Cover Pancyclicity

    Tzu-Liang KUNG  Hon-Chan CHEN  

     
    PAPER-Graphs and Networks

      Vol:
    E98-A No:12
      Page(s):
    2670-2676

    A graph G is two-disjoint-cycle-cover r-pancyclic if for any integer l satisfying r≤l≤|V(G)|-r, there exist two vertex-disjoint cycles C1 and C2 in G such that the lengths of C1 and C2 are |V(G)|-l and l, respectively, where |V(G)| denotes the total number of vertices in G. In particular, the graph G is two-disjoint-cycle-cover vertex r-pancyclic if for any two distinct vertices u and v of G, there exist two vertex-disjoint cycles C1 and C2 in G such that (i) C1 contains u, (ii) C2 contains v, and (iii) the lengths of C1 and C2 are |V(G)|-l and l, respectively, for any integer l satisfying r≤l≤|V(G)|-r. Moreover, G is two-disjoint-cycle-cover edge r-pancyclic if for any two vertex-disjoint edges (u,v) and (x,y) of G, there exist two vertex-disjoint cycles C1 and C2 in G such that (i) C1 contains (u,v), (ii) C2 contains (x,y), and (iii) the lengths of C1 and C2 are |V(G)|-l and l, respectively, for any integer l satisfying r≤l≤|V(G)|-r. In this paper, we first give Dirac-type sufficient conditions for general graphs to be two-disjoint-cycle-cover vertex/edge 3-pancyclic, and we also prove that the n-dimensional crossed cube CQn is two-disjoint-cycle-cover 4-pancyclic for n≥3, vertex 4-pancyclic for n≥5, and edge 6-pancyclic for n≥5.

  • Circularity of the Fractional Fourier Transform and Spectrum Kurtosis for LFM Signal Detection in Gaussian Noise Model

    Guang Kuo LU  Man Lin XIAO  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:12
      Page(s):
    2709-2712

    This letter investigates the circularity of fractional Fourier transform (FRFT) coefficients containing noise only, and proves that all coefficients coming from white Gaussian noise are circular via the discrete FRFT. In order to use the spectrum kurtosis (SK) as a Gaussian test to check if linear frequency modulation (LFM) signals are present in a set of FRFT points, the effect of the noncircularity of Gaussian variables upon the SK of FRFT coefficients is studied. The SK of the α th-order FRFT coefficients for LFM signals embedded in a white Gaussian noise is also derived in this letter. Finally the signal detection algorithm based on FRFT and SK is proposed. The effectiveness and robustness of this algorithm are evaluated via simulations under lower SNR and weaker components.

  • Tehrahertz CMOS Design for Low-Power and High-Speed Wireless Communication Open Access

    Minoru FUJISHIMA  Shuhei AMAKAWA  Kyoya TAKANO  Kosuke KATAYAMA  Takeshi YOSHIDA  

     
    INVITED PAPER

      Vol:
    E98-C No:12
      Page(s):
    1091-1104

    There have recently been more and more reports on CMOS integrated circuits operating at terahertz (≥ 0.1THz) frequencies. However, design environments and techniques are not as well established as for RF CMOS circuits. This paper reviews recent progress made by the authors in terahertz CMOS design for low-power and high-speed wireless communication, including device characterization and modeling techniques. Low-power high-speed wireless data transfer at 11Gb/s and 19pJ/bit and a 7-pJ/bit ultra-low-power transceiver chipset are presented.

  • The Fault-Tolerant Hamiltonian Problems of Crossed Cubes with Path Faults

    Hon-Chan CHEN  Tzu-Liang KUNG  Yun-Hao ZOU  Hsin-Wei MAO  

     
    PAPER-Switching System

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2116-2122

    In this paper, we investigate the fault-tolerant Hamiltonian problems of crossed cubes with a faulty path. More precisely, let P denote any path in an n-dimensional crossed cube CQn for n ≥ 5, and let V(P) be the vertex set of P. We show that CQn-V(P) is Hamiltonian if |V(P)|≤n and is Hamiltonian connected if |V(P)| ≤ n-1. Compared with the previous results showing that the crossed cube is (n-2)-fault-tolerant Hamiltonian and (n-3)-fault-tolerant Hamiltonian connected for arbitrary faults, the contribution of this paper indicates that the crossed cube can tolerate more faulty vertices if these vertices happen to form some specific types of structures.

  • Low Complexity Millimeter-Wave LOS-MIMO Systems with Uniform Circular Arrays for Small Cells Wireless Backhaul

    Liang ZHOU  Yoji OHASHI  Makoto YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2348-2358

    The dramatic growth in wireless data traffic has triggered the investigation of fifth generation (5G) wireless communication systems. Small cells will play a very important role in 5G to meet the 5G requirements in spectral efficiency, energy savings, etc. In this paper, we investigate low complexity millimeter-wave communication systems with uniform circular arrays (UCAs) in line-of-sight (LOS) multiple-input multiple-output (MIMO) channels, which are used in fixed wireless access such as small cell wireless backhaul for 5G. First, we demonstrate that the MIMO channel matrices for UCAs in LOS-MIMO channels are circulant matrices. Next, we provide a detailed derivation of the unified optimal antenna placement which makes MIMO channel matrices orthogonal for 3×3 and 4×4 UCAs in LOS channels. We also derive simple analytical expressions of eigenvalues and capacity as a function of array design (link range and array diameters) for the concerned systems. Finally, based on the properties of circulant matrices, we propose a high performance low complexity LOS-MIMO precoding system that combines forward error correction (FEC) codes and spatial interleaver with the fixed IDFT precoding matrix. The proposed precoding system for UCAs does not require the channel knowledge for estimating the precoding matrix at the transmitter under the LOS condition, since the channel matrices are circulant ones for UCAs. Simulation results show that the proposed low complexity system is robust to various link ranges and can attain excellent performance in strong LOS environments and channel estimation errors.

841-860hit(4258hit)