The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] DR(1315hit)

301-320hit(1315hit)

  • Speeding Up and Performance Evaluation of a Fully Automatic Radial Distortion Compensation Algorithm for Driving Assistance Cameras

    Yuta KANUKI  Naoya OHTA  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2015/07/03
      Vol:
    E98-D No:10
      Page(s):
    1892-1895

    Recently, cameras are equipped on cars in order to assist their drivers. These cameras often have a severe radial distortion because of their wide view angle, and sometimes it is necessary to compensate it in a fully automatic way in the field. We have proposed such a method, which uses the entropy of the histogram of oriented gradient (HOG) to evaluate the goodness of the compensation. Its performance was satisfactory, but the computational burden was too heavy to be executed by drive assistance devices. In this report, we discuss a method to speed up the algorithm, and obtain a new light algorithm feasible for such devices. We also show more comprehensive performance evaluation results then those in the previous reports.

  • Partial Encryption Method That Enhances MP3 Security

    Twe Ta OO  Takao ONOYE  Kilho SHIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:8
      Page(s):
    1760-1768

    The MPEG-1 layer-III compressed audio format, which is widely known as MP3, is the most popular for audio distribution. However, it is not equipped with security features to protect the content from unauthorized access. Although encryption ensures content security, the naive method of encrypting the entire MP3 file would destroy compliance with the MPEG standard. In this paper, we propose a low-complexity partial encryption method that is embedded during the MP3 encoding process. Our method reduces time consumption by encrypting only the perceptually important parts of an MP3 file rather than the whole file, and the resulting encrypted file is still compatible with the MPEG standard so as to be rendered by any existing MP3 players. For full-quality rendering, decryption using the appropriate cryptographic key is necessary. Moreover, the effect of encryption on audio quality can be flexibly controlled by adjusting the percentage of encryption. On the basis of this feature, we can realize the try-before-purchase model, which is one of the important business models of Digital Rights Management (DRM): users can render encrypted MP3 files for trial and enjoy the contents in original quality by purchasing decryption keys. From our experiments, it turns out that encrypting 2-10% of MP3 data suffices to generate trial music, and furthermore file size increasing after encryption is subtle.

  • Practical Effect of the Predictability of Android OpenSSL PRNG

    Soo Hyeon KIM  Daewan HAN  Dong Hoon LEE  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:8
      Page(s):
    1806-1813

    The built-in Pseudo Random Number Generator (PRNG) of OpenSSL on Android platform is important for producing the encryption keys and nonce needed for SSL/TLS communication. In addition, it is also widely used in generating random numbers for many applications irrelevant to SSL. We demonstrated that the initial OpenSSL PRNG state of Android apps can be restored practically, and claimed that a PreMasterSecret (PMS) can be recovered in certain apps using the RSA key agreement scheme at CCS2013. In this paper, we investigate more deeply the practical effect of the predictability of OpenSSL PRNG. First, we precisely analyze, and reduce the complexity of a PMS recovery attack on SSL with the RSA key exchange by analyzing the ASLR mechanism of Android. As a result, we show that the PMS can be recovered in O(246) computations with a probability of 25%. Next, we show that the attack is also applicable to the PMS of the ECDH key exchange by analyzing the heap memory pattern. We confirmed experimentally that the PMS can be recovered in real-time with a probability of 20%. Finally, we show the relation between the predictability of OpenSSL PRNG and the vulnerability of Android SecureRandom java class.

  • Offline Vehicle Detection at Night Using Center Surround Extremas

    Naoya KOSAKA  Ryota OGURA  Gosuke OHASHI  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1727-1734

    Recently, Intelligent Transport Systems (ITS) are being researched and developed briskly. As a part of ITS, detecting vehicles from images taken by a camera loaded on a vehicle are conducted. From such backgrounds, authors have been conducting vehicle detection in nighttime. To evaluate the accuracy of this detection, gold standards of the detection are required. At present, gold standards are created manually, but manually detecting vehicles take time. Accordingly, a system which detects vehicles accurately without human help is needed to evaluate the accuracy of the vehicle detection in real time. Therefore the purpose of this study is to automatically detect vehicles in nighttime images, taken by an in-vehicle camera, with high accuracy in offline processing. To detect vehicles we focused on the brightness of the headlights and taillights, because it is difficult to detect vehicles from their shape in nighttime driving scenes. The method we propose uses Center Surround Extremas, called CenSurE for short, to detect blobs. CenSurE is a method that uses the difference in brightness between the lights and the surroundings. However, blobs obtained by CenSurE will also include objects other than headlights and taillights. For example, streetlights and delineators would be detected. To distinguish such blobs, they are tracked in inverse time and vehicles are detected using tags based on the characteristics of each object. Although every object appears from the same point in forward time process, each object appears from different places in images in inverse time processing, allowing it to track and tag blobs easily. To evaluate the effectiveness of this proposed method, experiment of detecting vehicles was conducted using nighttime driving scenes taken by a camera loaded on a vehicle. Experimental results of the proposed method were nearly equivalent to manual detection.

  • A Survey on the Audible Quality of Outdoor Public Address Speakers for the Disaster Reduction Broadcasting System in the Central Area of Ishinomaki City

    Shosuke SATO  Masaharu NAKAGAWA  Masahiro IWASAKI  Fumihiko IMAMURA  

     
    LETTER

      Vol:
    E98-A No:8
      Page(s):
    1671-1673

    In the case of a disaster such as an earthquake or a tsunami, the city, town, and village administration usually issues an evacuation advisory and other information through the Outdoor Public Address Speakers for the disaster reduction broadcasting system covering its area of jurisdiction. However, in areas those have previous experience of a disaster, people frequently voice the lack of audibility of the disaster reduction broadcast. In this research, we conducted a questionnaire survey on the residents in the central area of Ishinomaki City, Miyagi Prefecture, who are the victims of the Great East Japan Earthquake Disaster, on the audible quality of outdoor public address (PA) speakers of the disaster reduction broadcasting system so as to understand the current state of such broadcasts and to propose ideal methods of sending and receiving information at the time of a future disaster.

  • A Breast Cancer Classifier Using a Neuron Model with Dendritic Nonlinearity

    Zijun SHA  Lin HU  Yuki TODO  Junkai JI  Shangce GAO  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2015/04/16
      Vol:
    E98-D No:7
      Page(s):
    1365-1376

    Breast cancer is a serious disease across the world, and it is one of the largest causes of cancer death for women. The traditional diagnosis is not only time consuming but also easily affected. Hence, artificial intelligence (AI), especially neural networks, has been widely used to assist to detect cancer. However, in recent years, the computational ability of a neuron has attracted more and more attention. The main computational capacity of a neuron is located in the dendrites. In this paper, a novel neuron model with dendritic nonlinearity (NMDN) is proposed to classify breast cancer in the Wisconsin Breast Cancer Database (WBCD). In NMDN, the dendrites possess nonlinearity when realizing the excitatory synapses, inhibitory synapses, constant-1 synapses and constant-0 synapses instead of being simply weighted. Furthermore, the nonlinear interaction among the synapses on a dendrite is defined as a product of the synaptic inputs. The soma adds all of the products of the branches to produce an output. A back-propagation-based learning algorithm is introduced to train the NMDN. The performance of the NMDN is compared with classic back propagation neural networks (BPNNs). Simulation results indicate that NMDN possesses superior capability in terms of the accuracy, convergence rate, stability and area under the ROC curve (AUC). Moreover, regarding ROC, for continuum values, the existing 0-connections branches after evolving can be eliminated from the dendrite morphology to release computational load, but with no influence on the performance of classification. The results disclose that the computational ability of the neuron has been undervalued, and the proposed NMDN can be an interesting choice for medical researchers in further research.

  • A High-Level Synthesis Algorithm with Inter-Island Distance Based Operation Chainings for RDR Architectures

    Kotaro TERADA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1366-1375

    In deep-submicron era, interconnection delays are not negligible even in high-level synthesis and regular-distributed-register architectures (RDR architectures) have been proposed to cope with this problem. In this paper, we propose a high-level synthesis algorithm using operation chainings which reduces the overall latency targeting RDR architectures. Our algorithm consists of three steps: The first step enumerates candidate operations for chaining. The second step introduces maximal chaining distance (MCD), which gives the maximal allowable inter-island distance on RDR architecture between chaining candidate operations. The last step performs list-scheduling and binding simultaneously based on the results of the two preceding steps. Our algorithm enumerates feasible chaining candidates and selects the best ones for RDR architecture. Experimental results show that our proposed algorithm reduces the latency by up to 40.0% compared to the original approach, and by up to 25.0% compared to a conventional approach. Our algorithm also reduces the number of registers and the number of multiplexers compared to the conventional approaches in some cases.

  • Mapping Multi-Level Loop Nests onto CGRAs Using Polyhedral Optimizations

    Dajiang LIU  Shouyi YIN  Leibo LIU  Shaojun WEI  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1419-1430

    The coarse-grained reconfigurable architecture (CGRA) is a promising computing platform that provides both high performance and high power-efficiency. The computation-intensive portions of an application (e.g. loop nests) are often mapped onto CGRA for acceleration. However, mapping loop nests onto CGRA efficiently is quite a challenge due to the special characteristics of CGRA. To optimize the mapping of loop nests onto CGRA, this paper makes three contributions: i) Establishing a precise performance model of mapping loop nests onto CGRA, ii) Formulating the loop nests mapping as a nonlinear optimization problem based on polyhedral model, iii) Extracting an efficient heuristic algorithm and building a complete flow of mapping loop nests onto CGRA (PolyMAP). Experiment results on most kernels of the PolyBench and real-life applications show that our proposed approach can improve the performance of the kernels by 27% on average, as compared to the state-of-the-art methods. The runtime complexity of our approach is also acceptable.

  • Improved Identification Protocol Based on the MQ Problem

    Fábio S. MONTEIRO  Denise H. GOYA  Routo TERADA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:6
      Page(s):
    1255-1265

    The MQ problem, which consists of solving a system of multivariate quadratic polynomials over a finite field, has attracted the attention of researchers for the development of public-key cryptosystems because (1) it is NP-complete, (2) there is no known polynomial-time algorithm for its solution, even in the quantum computational model, and (3) it enables cryptographic primitives of practical interest. In 2011, Sakumoto, Shirai and Hiwatari presented two new zero-knowledge identification protocols based exclusively on the MQ problem. The 3-pass identification protocol of Sakumoto et al. has impersonation probability 2/3. In this paper, we propose an improvement that reduces the impersonation probability to 1/2. The result is a protocol that reduces the total computation time, the total communication needed and requires a smaller number of rounds for the same security level. We also present a new extension that achieves an additional communication reduction with the use of some smaller hash commitments, but maintaining the same security level.

  • A Low Power and Hardware Efficient Syndrome Key Equation Solver Architecture and Its Folding with Pipelining

    Kazuhito ITO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E98-A No:5
      Page(s):
    1058-1066

    Syndrome key equation solution is one of the important processes in the decoding of Reed-Solomon codes. This paper proposes a low power key equation solver (KES) architecture where the power consumption is reduced by decreasing the required number of multiplications without degrading the decoding throughput and latency. The proposed method employs smaller number of multipliers than a conventional low power KES architecture. The critical path in the proposed KES circuit is minimized so that the operation at a high clock frequency is possible. A low power folded KES architecture is also proposed to further reduce the hardware complexity by executing folded operations in a pipelined manner with a slight increase in decoding latency.

  • Power-Efficient Instancy Aware DRAM Scheduling

    Gung-Yu PAN  Chih-Yen LAI  Jing-Yang JOU  Bo-Cheng Charles LAI  

     
    PAPER-Systems and Control

      Vol:
    E98-A No:4
      Page(s):
    942-953

    Nowadays, computer systems are limited by the power and memory wall. As the Dynamic Random Access Memory (DRAM) has dominated the power consumption in modern devices, developing power-saving approaches on DRAM has become more and more important. Among several techniques on different abstract levels, scheduling-based power management policies can be applied to existing memory controllers to reduce power consumption without causing severe performance degradation. Existing power-aware schedulers cluster memory requests into sets, so that the large portion of the DRAM can be switched into the power saving mode; however, only the target addresses are taken into consideration when clustering, while we observe the types (read or write) of requests can play an important role. In this paper, we propose two scheduling-based power management techniques on the DRAM controller: the inter-rank read-write aware clustering approach greatly reduces the active standby power, and the intra-rank read-write aware reordering approach mitigates the performance degradation. The simulation results show that the proposed techniques effectively reduce 75% DRAM power on average. Compared with the existing policy, the power reduction is 10% more on average with comparable or less performance degradation for the proposed techniques.

  • A Simpler Trace Representation of Legendre Sequences

    Minglong QI  Shengwu XIONG  Jingling YUAN  Wenbi RAO  Luo ZHONG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:4
      Page(s):
    1026-1031

    We found that the work of Kim et al. [1] on trace representation of the Legendre sequence with the periods p ≡ ±3 (mod 8) can be improved by restricting the selection of the periods p while maintaining the form p ≡ ±3 (mod 8) unchanged. Our method relies on forcing the multiplicative group of residue classes modulo p, Zp*, to take 2 as the least primitive root. On the other hand, by relaxing the very strong condition in the theorem of these authors and by using the product among powers of the primitive root and powers of any quadratic residue element to represent an element in Zp*, we could extend Kim's formula so that it becomes a special case of our formula more general.

  • Client Honeypot Multiplication with High Performance and Precise Detection

    Mitsuaki AKIYAMA  Takeshi YAGI  Youki KADOBAYASHI  Takeo HARIU  Suguru YAMAGUCHI  

     
    PAPER-Attack Monitoring & Detection

      Vol:
    E98-D No:4
      Page(s):
    775-787

    We investigated client honeypots for detecting and circumstantially analyzing drive-by download attacks. A client honeypot requires both improved inspection performance and in-depth analysis for inspecting and discovering malicious websites. However, OS overhead in recent client honeypot operation cannot be ignored when improving honeypot multiplication performance. We propose a client honeypot system that is a combination of multi-OS and multi-process honeypot approaches, and we implemented this system to evaluate its performance. The process sandbox mechanism, a security measure for our multi-process approach, provides a virtually isolated environment for each web browser. It prevents system alteration from a compromised browser process by I/O redirection of file/registry access. To solve the inconsistency problem of file/registry view by I/O redirection, our process sandbox mechanism enables the web browser and corresponding plug-ins to share a virtual system view. Therefore, it enables multiple processes to be run simultaneously without interference behavior of processes on a single OS. In a field trial, we confirmed that the use of our multi-process approach was three or more times faster than that of a single process, and our multi-OS approach linearly improved system performance according to the number of honeypot instances. In addition, our long-term investigation indicated that 72.3% of exploitations target browser-helper processes. If a honeypot restricts all process creation events, it cannot identify an exploitation targeting a browser-helper process. In contrast, our process sandbox mechanism permits the creation of browser-helper processes, so it can identify these types of exploitations without resulting in false negatives. Thus, our proposed system with these multiplication approaches improves performance efficiency and enables in-depth analysis on high interaction systems.

  • WBAN Energy Efficiency and Dependability Improvement Utilizing Wake-Up Receiver Open Access

    Juha PETÄJÄJÄRVI  Heikki KARVONEN  Konstantin MIKHAYLOV  Aarno PÄRSSINEN  Matti HÄMÄLÄINEN  Jari IINATTI  

     
    INVITED PAPER

      Vol:
    E98-B No:4
      Page(s):
    535-542

    This paper discusses the perspectives of using a wake-up receiver (WUR) in wireless body area network (WBAN) applications with event-driven data transfers. First we compare energy efficiency between the WUR-based and the duty-cycled medium access control protocol -based IEEE 802.15.6 compliant WBAN. Then, we review the architectures of state-of-the-art WURs and discuss their suitability for WBANs. The presented results clearly show that the radio frequency envelope detection based architecture features the lowest power consumption at a cost of sensitivity. The other architectures are capable of providing better sensitivity, but consume more power. Finally, we propose the design modification that enables using a WUR to receive the control commands beside the wake-up signals. The presented results reveal that use of this feature does not require complex modifications of the current architectures, but enables to improve energy efficiency and latency for small data blocks transfers.

  • Relay Transmission Thruchip Interface with Low-Skew 3D Clock Distribution Network

    Yasuhiro TAKE  Tadahiro KURODA  

     
    PAPER

      Vol:
    E98-C No:4
      Page(s):
    322-332

    This paper presents an inductive coupling interface using a relay transmission scheme and a low-skew 3D clock distribution network synchronized with an external reference clock source for 3D chip stacking. A relayed transmission scheme using one coil is proposed to reduce the number of coils in a data link. Coupled resonation is utilized for clock and data recovery (CDR) for the first time in the world, resulting in the elimination of a source-synchronous clock link. As a result, the total number of coils required is reduced to one-fifth of the conventional number required, yielding a significant improvement in data rate, layout area, and energy consumption. A low-skew 3D clock distribution network utilizes vertically coupled LC oscillators and horizontally coupled ring oscillators. The proposed frequency-locking and phase-pulling scheme widens the lock range to $pm$ 10%. Two test chips were designed and fabricated in 0.18 $mu$m CMOS. The bandwidth of the proposed interface using relay transmission ThruChip Interface (TCI) is 2.7 Gb/s/mm$^2$; energy consumption per chip is 0.9 pJ/b/chip. Clock skew is less than 18- and 25- ps under a 1.8- and 0.9- V supply. The distributed RMS jitter is smaller than 1.72 ps.

  • Access Control to Prevent Malicious JavaScript Code Exploiting Vulnerabilities of WebView in Android OS

    Jing YU  Toshihiro YAMAUCHI  

     
    LETTER-Access Control

      Pubricized:
    2014/12/04
      Vol:
    E98-D No:4
      Page(s):
    807-811

    Android applications that using WebView can load and display web pages. Interaction with web pages allows JavaScript code within the web pages to access resources on the Android device by using the Java object, which is registered into WebView. If this WebView feature were exploited by an attacker, JavaScript code could be used to launch attacks, such as stealing from or tampering personal information in the device. To address these threats, we propose an access control on the security-sensitive APIs at the Java object level. The proposed access control uses static analysis to identify these security-sensitive APIs, detects threats at runtime, and notifies the user if threats are detected, thereby preventing attacks from web pages.

  • High-Speed Design of Conflictless Name Lookup and Efficient Selective Cache on CCN Router

    Atsushi OOKA  Shingo ATA  Kazunari INOUE  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E98-B No:4
      Page(s):
    607-620

    Content-centric networking (CCN) is an innovative network architecture that is being considered as a successor to the Internet. In recent years, CCN has received increasing attention from all over the world because its novel technologies (e.g., caching, multicast, aggregating requests) and communication based on names that act as addresses for content have the potential to resolve various problems facing the Internet. To implement these technologies, however, requires routers with performance far superior to that offered by today's Internet routers. Although many researchers have proposed various router components, such as caching and name lookup mechanisms, there are few router-level designs incorporating all the necessary components. The design and evaluation of a complete router is the primary contribution of this paper. We provide a concrete hardware design for a router model that uses three basic tables — forwarding information base (FIB), pending interest table (PIT), and content store (CS) — and incorporates two entities that we propose. One of these entities is the name lookup entity, which looks up a name address within a few cycles from content-addressable memory by use of a Bloom filter; the other is the interest count entity, which counts interest packets that require certain content and selects content worth caching. Our contributions are (1) presenting a proper algorithm for looking up and matching name addresses in CCN communication, (2) proposing a method to process CCN packets in a way that achieves high throughput and very low latency, and (3) demonstrating feasible performance and cost on the basis of a concrete hardware design using distributed content-addressable memory.

  • Trace Representation over Fr of Binary Jacobi Sequences with Period pq

    Minglong QI  Shengwu XIONG  Jingling YUAN  Wenbi RAO  Luo ZHONG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:3
      Page(s):
    912-917

    In this letter, we give a trace representation of binary Jacobi sequences with period pq over an extension field of the odd prime field Fr. Our method is based on the use of a pqth root of unity over the extension field, and the representation of the Jacobi sequences by corresponding indicator functions and quadratic characters of two primes p and q.

  • A Portable Biofuel Cell Utilizing Agarose Hydrogel Containing Glucose

    Hideaki GOTO  Ryohei SANO  Yudai FUKUSHI  Yasushiro NISHIOKA  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    110-115

    A portable biofuel cell with an anode modified with glucose oxidase/ferrocene and a cathode modified with bilirubin oxidase was fabricated on a flexible polyimide substrate. The anode and the cathode with an area of 3$ imes$10,mm$^2$ were separated with a gap of 1,mm. Solidified glucose biofuel units were prepared by solidifying 50--200,mM glucose aqueous solution containing 0.5--2.5% agarose. The influences of the biofuel volume and glucose concentrations on power generation were investigated. The maximum power density was almost independent on the agarose concentration, and it continuously decreased as time clasped possibly due to the consumption of glucose and/or release of the enzymes from the electrodes. The maximum power and power density were 0.32 $mu $W and 1.08,$mu $W/cm$^2$ at 0.17,V, respectively when the solidified hydrogel biofuel unit with a dimension of 13$ imes$24$ imes$4 mm$^3$ containing the 100,mM glucose aqueous solution and 2.5, wt% agarose was used. The biofuel cell continued to deliver the power density over 0.5,$mu $W/cm$^2$ for more than 1,h.

  • Battery-Aware Loop Nests Mapping for CGRAs

    Yu PENG  Shouyi YIN  Leibo LIU  Shaojun WEI  

     
    PAPER-Architecture

      Vol:
    E98-D No:2
      Page(s):
    230-242

    Coarse-grained Reconfigurable Architecture (CGRA) is a promising mobile computing platform that provides both high performance and high energy efficiency. In an application, loop nests are usually mapped onto CGRA for further acceleration, so optimizing the mapping is an important goal for design of CGRAs. Moreover, obviously almost all of mobile devices are powered by batteries, how to reduce energy consumption also becomes one of primary concerns in using CGRAs. This paper makes three contributions: a) Proposing an energy consumption model for CGRA; b) Formulating loop nests mapping problem to minimize the battery charge loss; c) Extract an efficient heuristic algorithm called BPMap. Experiment results on most kernels of the benchmarks and real-life applications show that our methods can improve the performance of the kernels and lower the energy consumption.

301-320hit(1315hit)