The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4073hit)

2441-2460hit(4073hit)

  • Fast and Accurate Power Bus Designer for Multi-Layers High-Speed Digital Boards

    Yong-Ju KIM  Won-Young JUNG  Jae-Kyung WEE  

     
    PAPER-Integrated Electronics

      Vol:
    E89-C No:7
      Page(s):
    1097-1105

    Fast and accurate power bus designer (FAPUD) for multi-layers high-speed digital boards is the power supply network design tool for accurate and precise high speed board. FAPUD is constructed based on two main algorithms of the PBEC (Path Based Equivalent Circuit) model and the network synthesis method. The PBEC model exploits simple arithmetic expressions of the lumped 1-D circuit model from the electrical parameters of a 2-D power distribution network. The circuit level design based on PBEC is carried with the proposed regional approach. The circuit level design directly calculates and determines the size of on-chip decoupling capacitors, the size and the location of off-chip decoupling capacitors, and the effective inductances of the package power bus. As a design output, a lumped circuit model and a pre-layout of the power bus including a whole decoupling capacitors are obtained after processing FAPUD. In the tuning procedure, the board re-optimization considering simultaneous switching noise (SSN) added by I/O switching in can be carried out because the I/O switching effect on a power supply noise can estimate for the operation frequency range with the lumped circuit model. Furthermore, if a design changes or needs to be tuned, FAPUD can modify design by replacing decoupling capacitors without consuming other design resources. Finally, FAPUD is accurate compared with conventional PEEC-based design tools, and its design time is 10 times faster than that of conventional PEEC-based design tools.

  • Secret Key Agreement from Correlated Source Outputs Using Low Density Parity Check Matrices

    Jun MURAMATSU  

     
    PAPER-Information Theory

      Vol:
    E89-A No:7
      Page(s):
    2036-2046

    This paper deals with a secret key agreement problem from correlated random numbers. It is proved that there is a pair of linear matrices that yields a secret key agreement in the situation wherein a sender, a legitimate receiver, and an eavesdropper have access to correlated random numbers. A relation between the coding problem of correlated sources and a secret key agreement problem from correlated random numbers are also discussed.

  • InP DHBT Integrated Circuits for Fiber-Optic High-Speed Applications

    Jean GODIN  Agnieszka KONCZYKOWSKA  Muriel RIET  Jacques MOULU  Philippe BERDAGUER  Filipe JORGE  

     
    INVITED PAPER

      Vol:
    E89-C No:7
      Page(s):
    883-890

    Various mixed-signal very-high-speed integrated circuits have been developed using InP DHBTs. These circuits have been designed for fiber-optic 43 Gbit/s transmissions applications. They include: on the transmitting side, a clocked driver and an EAM driver, as well as a PSBT/DQPSK precoder; on the receiving side, a sensitive decision circuit, a limiting amplifier and an eye monitor. System experiments made possible by these circuits include a 6 Tbit/s transmission on >6000 km distance.

  • A Lightweight Tree Based One-Key Broadcast Encryption Scheme

    Tomoyuki ASANO  Kazuya KAMIO  

     
    PAPER-Information Security

      Vol:
    E89-A No:7
      Page(s):
    2019-2028

    Broadcast encryption technology enables a sender to send information securely to a group of receivers excluding specified receivers over a broadcast channel. In this paper, we propose a new key-tree structure based on Rabin cryptosystem, and an access control scheme using the structure. We show the security of the access control scheme and construct a new broadcast encryption scheme based on it. The proposed broadcast encryption scheme is a modification of the complete subtree method and it reduces the number of keys a receiver stores to one. There have been proposed some modifications of the complete subtree method which minimize the number of keys for a receiver to one, and the most efficient one among them with respect to the computational overhead at receivers is based on RSA cryptosystem. The computational overhead at receivers in our scheme is around log2e times smaller than the most efficient previously proposed one, where e is a public exponent of RSA, and the proposed scheme is the most efficient among tree based one-key schemes. This property is examined by experimental results. Our scheme achieves this reduction in the computational overhead in exchange for an increase in the size of nonsecret memory by [log n * few (e.g. eight)] bits, where n is the total number of receivers.

  • Accuracy of Two-Dipole Source Localization Using a Method Combining BP Neural Network with NLS Method from 32-Channel EEGs

    Zhuoming LI  Xiaoxiao BAI  Qinyu ZHANG  Masatake AKUTAGAWA  Fumio SHICHIJO  Yohsuke KINOUCHI  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:7
      Page(s):
    2234-2242

    The electroencephalogram (EEG) has become a widely used tool for investigating brain function. Brain signal source localization is a process of inverse calculation from sensor information (electric potentials for EEG) to the identification of multiple brain sources to obtain the locations and orientation parameters. In this paper, we describe a combination of the backpropagation neural network (BPNN) with the nonlinear least-square (NLS) method to localize two dipoles with reasonable accuracy and speed from EEG data computerized by two dipoles randomly positioned in the brain. The trained BPNN, obtains the initial values for the two dipoles through fast calculation and also avoids the influence of noise. Then the NLS method (Powell algorithm) is used to accurately estimate the two dipole parameters. In this study, we also obtain the minimum distance between the assumed dipole pair, 0.8 cm, in order to localize two sources from a smaller limited distance between the dipole pair. The present simulation results demonstrate that the combined method can allow us to localize two dipoles with high speed and accuracy, that is, in 20 seconds and with the position error of around 6.5%, and to reduce the influence of noise.

  • Modified CMOS Op-Amp with Improved Gain and Bandwidth

    Mahdi MOTTAGHI-KASHTIBAN  Khayrollah HADIDI  Abdollah KHOEI  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    775-780

    This paper presents a novel gain boosted and bandwidth enhanced CMOS Op-Amp based on the well-known folded cascode structure. In contrast with the conventional methods which increase output resistance for gain boosting, the transconductance of the circuit is increased, therefore the -3 dB frequency is the same as for folded cascode structure. With negligible extra power consumption, the unity gain bandwidth is increased considerably. In this method, a new node is created in the circuit which introduces a pole to the transfer function with a frequency lower than cascode pole; feed-forward compensation is employed to reduce the effect of this pole on the frequency response. The input common mode range is limited slightly by 0.2-0.3 V with respect to folded cascode which is insensible. HSPICE simulations using level 49 parameters (BSIM3v3) in a typical 0.35 µm CMOS technology result in three times gain boosting and 60% enhancement in unity gain bandwidth compared to folded cascode, while the power consumption is increased by 10%.

  • Realtime Hand Posture Estimation with Self-Organizing Map for Stable Robot Control

    Kiyoshi HOSHINO  Takanobu TANIMOTO  

     
    PAPER-Robot and Interface

      Vol:
    E89-D No:6
      Page(s):
    1813-1819

    The hand posture estimation system by searching a similar image from a vast database, such as our previous research, may cause the increase of processing time, and prevent realtime controlling of a robot. In this study, the authors proposed a new estimation method of human hand posture by rearranging a large-scale database with the Self-Organizing Map including self-reproduction and self-annihilation, which enables two-step searches of similar image with short period of processing time, within small errors, and without deviation of search time. The experimental results showed that our system exhibited good performance with high accuracy within processing time above 50 fps for each image input with a 2.8 GHz CPU PC.

  • A Leakage Reduction Scheme for Sleep Transistors with Decoupling Capacitors in the Deep Submicron Era

    Kazutoshi KOBAYASHI  Akihiko HIGUCHI  Hidetoshi ONODERA  

     
    PAPER-Electronic Circuits

      Vol:
    E89-C No:6
      Page(s):
    838-843

    Sleep transistors such as MTCMOS and SCCMOS drastically reduce leakage current, but their ON resistances cause significant performance degradation. Larger sleep transistors reduce their ON resistances, but increase leakage current in a sleep mode. Decoupling capacitors beside sleep transistors reduce leakage current. Experimental results show that PMOS SCCMOS with a 4 pF decoupling capacitor reduces leakage current by 1/673 on a 64 bit adder in a 90 nm process.

  • Dexterous Robot Hand Control with Data Glove by Human Imitation

    Kiyoshi HOSHINO  

     
    PAPER-Robot and Interface

      Vol:
    E89-D No:6
      Page(s):
    1820-1825

    The purpose of the study is to obtain the automatic and optimal matching between a motion-measurement device such as a data glove and an output device such as a dexterous robot hand, where there are many differences in the numbers of degree of freedom, sensor and actuator positions, and data format, by means of motion imitation by the humans. Through the algorithm proposed here, a system engineer or user need no labor of determining the values of gains and parameters to be used. In the system, a subject with data glove imitated the same motion with a dexterous robot hand which was moving according to a certain mathematical function. Autoregressive models were adapted to the matching, where each joint angle in the robot and data glove data of the human were used as object and explanatory variables respectively. The partial regression coefficients were estimated by means of singular value decomposition with a system-noise reduction algorithm utilizing statistical properties. The experimental results showed that the robot hand was controlled with high accuracy with small delay, suggesting that the method proposed in this study is proper and easy way and is adaptive to many other systems between a pair of motion-measurement device and output device.

  • Collusion-Attack Free ID-Based Non-interactive Key Sharing

    Hatsukazu TANAKA  

     
    PAPER-Information Security

      Vol:
    E89-A No:6
      Page(s):
    1820-1824

    A new simply implemented collusion-attack free identity-based non-interactive key sharing scheme (ID-NIKS) has been proposed. A common-key can be shared by executing only once a modular exponentiation which is equivalent to RSA deciphering, and the security depends on the difficulty of factoring and the discrete logarithm problem. Each user's secret information can be generated by solving two simple discrete logarithm problems and synthsizing their solutions by linear combination. The detail comparison with the Maurer-Yacobi's scheme including its modified versions shows that the computational complexity to generate each user's secret information is much smaller and the freedom to select system parameters is much greater than that of the Maurer-Yacobi's scheme. Then our proposed scheme can be implemented very easily and hence it is suitable for practical use.

  • A Practical Method of Numerical Calculation of the Mapping Degree

    Sunao MURASHIGE  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E89-A No:6
      Page(s):
    1813-1819

    This paper proposes a simple and efficient method to numerically obtain the mapping degree deg(f, 0, B) of a C1 map f : Rn → Rn at a regular value 0 relative to a bounded open subset B ⊂ Rn. For practical application, this method adopts Aberth's algorithm which does not require computation of derivatives and determinants, and reduces the computational cost with two additional procedures, namely preconditioning using the coordinate transformation and pruning using Krawczyk's method. Numerical examples show that the proposed method gives the mapping degree with 2n+1 operations using interval arithmetic.

  • Design of a Small-Offset 12-Bit CMOS DAC Using Weighted Mean Sample-and-Hold Circuit

    Masayuki UNO  Shoji KAWAHITO  

     
    PAPER

      Vol:
    E89-C No:6
      Page(s):
    702-709

    This paper describes the design of a small-offset 12-bit CMOS charge-redistribution DAC using a weighted-mean flip-around sample-and-hold circuit (S/H). Flip-around S/H topology can realize small-offset characteristics, and it is effective to reduce power dissipation and chip area because independent feedback capacitors are not necessary. In this DAC the small-offset characteristic remains not only in amplification phase but also in sampling phase with the circuit technique. The design of 1.8 V, 50 MS/s fully differential DAC with output swing of 2 Vp-p has very small offset of 100 µV for the reset switch mismatch of 2%. A technique to improve dynamic performance measured by SFDR using damping resistors and switches at the output stage is also presented. The designed 12-bit DAC with 0.25 µm CMOS technology has low-power dissipation of 35 mW at 50 MS/s.

  • Mirinae: A Peer-to-Peer Overlay Network for Content-Based Publish/Subscribe Systems

    Yongjin CHOI  Daeyeon PARK  

     
    PAPER-Network

      Vol:
    E89-B No:6
      Page(s):
    1755-1765

    Content-based publish/subscribe systems provide a useful alternative to traditional address-based communication due to their ability to decouple communication between participants. It has remained a challenge to design a scalable overlay supporting the complexity of content-based networks, while satisfying the desirable properties large distributed systems should have. This paper presents the design of Mirinae, a new structured peer-to-peer overlay mesh based on the interests of peers. Given an event, Mirinae provides a flexible and efficient dissemination tree minimizing the participation of non-matching nodes. We also present a novel ID space transformation mechanism for balancing routing load of peers even with highly skewed data, which is typical of the real world. Our evaluation demonstrates that Mirinae is able to achieve its goals of scalability, efficiency, and near-uniform load balancing. Mirinae can be used as a substrate for content-search and range query in other important distributed applications.

  • Performance of a Base Station Feedback-Type Adaptive Array Antenna with Limited Number of Feedback Bits

    Jeongkeun CHOI  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1793-1798

    Feedback-type Adaptive Array Antenna has been proposed for frequency division duplexed (FDD) system, where the mobile station (MS) measures channel characteristics and sends those back to the base station (BS). Using a higher number of feed-back bits provides better performance. However it wastes channel capacity of the up-link. On the other hand, error in feedback signals transmission causes significant performance degradation. To solve these problems, this paper proposes a method that the MS sends back the difference between the optimum weights calculated at the MS and weights which are currently used at the BS. Bit error rate performance of the system is shown under a realistic propagation condition.

  • Performance and Convergence Analysis of Tree-LDPC Codes on the Min-Sum Iterative Decoding Algorithm

    Kwangseok NOH  Jun HEO  

     
    LETTER

      Vol:
    E89-A No:6
      Page(s):
    1749-1750

    In this paper, the performance of Tree-LDPC code [1] is presented based on the min-sum algorithm with scaling and the asymptotic performance in the water fall region is shown by density evolution. We presents that the Tree-LDPC code show a significant performance gain by scaling with the optimal scaling factor [3] which is obtained by density evolution methods. We also show that the performance of min-sum with scaling is as good as the performance of sum-product while the decoding complexity of min-sum algorithm is much lower than that of sum-product algorithm.

  • I-Poll: Improved Polling Scheme for Augmenting Voice Support in IEEE 802.11 PCF

    Jun ZHENG  Emma REGENTOVA  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E89-B No:6
      Page(s):
    1964-1967

    In this paper, we present a polling scheme which allows for augmenting the support of voice communications in point co-ordination function (PCF) of IEEE 802.11 wireless networks. In this scheme, the Access Point (AP) of the Basic Service Set (BSS) maintains two polling lists, i.e. the talking list and the silence list. Based on the talking status of the stations identified via silence detection, two lists are dynamically adjusted by the AP. Temporary removal is applied to the stations in the silence list to further upgrade the performance. The conducted study based on simulation has shown that the proposed scheme can support more voice stations and has a lower packet loss rate than that obtained by four reference polling algorithms.

  • Reduction of the Intensity Noise by Electric Positive and Negative Feedback in Blue-Violet InGaN Semiconductor Lasers

    Minoru YAMADA  Kazushi SAEKI  Eiji TERAOKA  Yuji KUWAMURA  

     
    LETTER-Lasers, Quantum Electronics

      Vol:
    E89-C No:6
      Page(s):
    858-860

    Reduction of the intensity noise in semiconductor lasers is important subject to extend application range of the device. Blue-violet InGaN laser reveals high quantum noise when the laser is operated with low output power. The authors proposed a new scheme of noise reduction both for the optical feedback noise and the quantum noise by applying electric feedback which is positive type at a high frequency and negative type for lower frequency range. Noise reduction effect down to a level lower than the quantum noise was experimentally confirmed even under the optical feedback.

  • Constraint-Based Software Specifications and Verification Using UML

    Chin-Feng FAN  Chun-Yin CHENG  

     
    PAPER-Software Engineering

      Vol:
    E89-D No:6
      Page(s):
    1914-1922

    Constraint-based software specifications enable run-time monitoring to detect probable risk events and ensure the desired system behavior. SpecTRM-RL is a well-developed constraint-based specification method for computer-controlled systems. However, it is desirable to express constraints in familiar visual models. To provide better visualization and popularity, we developed methods to represent all the SpecTRM-RL constraint types in UML. We have also extended SpecTRM's constraints by adding relational and global constraints, and then expressed them in OCL. Safety verification of these specifications is also proposed. We developed a systematic way to construct fault trees for safety analysis based on UML diagrams. Due to the generality of UML as well as the defensive manner of constraints and fault tree analysis, our approach can be adapted for both general applications and safety-critical applications.

  • A Fault-Tolerant Content Addressable Network

    Daisuke TAKEMOTO  Shigeaki TAGASHIRA  Satoshi FUJITA  

     
    PAPER-Networks

      Vol:
    E89-D No:6
      Page(s):
    1923-1930

    In this paper, we propose a new method to enhance the fault-tolerance of the Content Addressable Network (CAN), which is known as a typical pure P2P system based on the notion of Distributed Hash Table (DHT). The basic idea of the proposed method is to introduce redundancy to the management of index information distributed over the nodes in the given P2P network, by allowing each index to be assigned to several nodes, which was restricted to be one in the original CAN system. To keep the consistency among several copies of indices, we propose an efficient synchronization scheme based on the notion of labels assigned to each copy in a distinct manner. The performance of the proposed scheme is evaluated by simulation. The result of simulations indicates that the proposed scheme significantly enhances the fault-tolerance of the CAN system.

  • A Band Extension Technique for G.711 Speech Using Steganography

    Naofumi AOKI  

     
    LETTER-Network

      Vol:
    E89-B No:6
      Page(s):
    1896-1898

    This study investigates a band extension technique for speech data encoded with G.711, the most common codec for digital speech communications system such as VoIP. The proposed technique employs steganography for the transmission of the side information required for the band extension. Due to the steganography, the proposed technique is able to enhance the speech quality without an increase of the amount of data transmission. From the results of a subjective experiment, it is indicated that the proposed technique may potentially be useful for improving the speech quality, compared with the conventional technique.

2441-2460hit(4073hit)