The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] LD(1872hit)

1521-1540hit(1872hit)

  • Low Frequency Radiated Immunity Test Using Three-Dimensional Helmholtz-Coil Set

    Kimitoshi MURANO  Yoshio KAMI  

     
    PAPER-EMC Measurement and Test

      Vol:
    E83-B No:3
      Page(s):
    467-473

    A radiated immunity test method using fields in a three-dimensional Helmholtz-coil set is described. The incident field to equipment under test (EUT) is generated by an orthogonally structured three sets of Helmholtz coil. Using this structure, the resultant field can be generated with arbitrary amplitude and direction. Therefore, the three dimensional immunity characteristics of an EUT can be cleared. The resultant field is calculated numerically and it is established that the field distribution is uniform inside the three dimensional Helmholtz-coil set. This is also confirmed through comparison with measured results. As an example, the immunity test of a cathode ray tube (CRT) display is made and the immunity map of CRT is obtained without reseting placement of EUT. Such map makes us understand the physical meaning and weak points.

  • Improving Design Method for Sensitivity and Frequency Response of E-Field Sensor Using a Mach-Zehnder Interferometer

    Kimihiro TAJIMA  Ryuichi KOBAYASHI  Nobuo KUWABARA  Masamitsu TOKUDA  

     
    PAPER-Sensors for Electromagnetic Phenomena

      Vol:
    E83-C No:3
      Page(s):
    347-354

    The design method for sensitivity and frequency response of an electric field sensor using a Mach-Zehnder interferometer (an optical E-field sensor) has been developed in order to measure electromagnetic environments and the performance of measuring facilities. The designs of the optical modulator, sensor elements, and sensitivity were analyzed theoretically by using an accurate equivalent circuit of the sensor. Then an actual sensor was fabricated, and its characteristics of the sensor were evaluated experimentally. The results show that the designed sensitivity and frequency response were optimal. The optical output deviation when the temperature increased from 0 to 40 was reduced to within 2 dB. The minimum detectable electric field strength was 17 dBµV/m (8 µV/m), and the dynamic range was more than 100 dB. The frequency response of the sensitivity was almost flat between 200 Hz and 900 MHz.

  • A Highly Linear Open-Loop Full CMOS High-Speed Sample-and-Hold Stage

    Khayrollah HADIDI  Masahiro SASAKI  Tadatoshi WATANABE  Daigo MURAMATSU  Takashi MATSUMOTO  

     
    PAPER

      Vol:
    E83-A No:2
      Page(s):
    261-266

    Based on a cascode-driver source-follower buffer, and a passive sampling architecture, we have implemented a differential sample-and-hold circuit in a 0.8 µm digital CMOS process. The buffer which eliminates channel length modulation of the driver device behaves very linearly, in low frequencies or sampled-data applications. This is the main reason that this first open-loop CMOS sample-and-hold can achieves very high linearity while functions at very high sampling rate. The circuit achieved -61 dB THD for a 1.42 Vp-p 10 MHz input signal at a 103 MHz sampling rate and -55.9 dB THD for a 1.22 Vp-p 20 MHz at a 101 MHz sampling rate.

  • A CAD-Compatible SOI-CMOS Gate Array Using 0.35µm Partially-Depleted Transistors

    Kimio UEDA  Koji NII  Yoshiki WADA  Shigenobu MAEDA  Toshiaki IWAMATSU  Yasuo YAMAGUCHI  Takashi IPPOSHI  Shigeto MAEGAWA  Koichiro MASHIKO  Yasutaka HORIBA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    205-211

    This paper describes a 0.35µm SOI-CMOS gate array using partially-depleted transistors. The gate array adopts the field-shield isolation technique with body-tied structures to suppress floating-body problems such as: (1) kink characteristics in drain currents, (2) low break-down voltage, and (3) frequency-dependent delay time. By optimizing the basic-cell layout and power-line wiring, the SOI-CMOS gate array also allows the use of the cell libraries and the design methodologies compatible with bulk-CMOS gate arrays. An ATM (Asynchronous Transfer Mode) physical-layer processing LSI was fabricated using a 0.35µm SOI-CMOS gate array with 560k raw gates. The LSI operated at 156 Mbps at 2.0 V, while consuming 71% less power than using a typical 0.35µm 3.3 V bulk-CMOS gate array.

  • Energy-Reduction Effect of Ultralow-Voltage MTCMOS/SIMOX Circuits Using a Graph with Equispeed and Equienergy Lines

    Takakuni DOUSEKI  Toshishige SHIMAMURA  Koji FUJII  Junzo YAMADA  

     
    PAPER

      Vol:
    E83-C No:2
      Page(s):
    212-219

    This paper describes the effect of lowering the supply voltage and threshold voltages on the energy reduction of an ultralow-voltage multi-threshold CMOS/SIMOX (MTCMOS/SIMOX) circuit. The energy dissipation is evaluated using a graph with equispeed and equienergy lines on a supply voltage and a threshold voltage plane. In order to draw equispeed and equienergy lines for ultralow-voltage circuits, we propose a modified energy-evaluation model taking into account a input-waveform transition-time of the circuits. The validity of the proposed energy-evaluation model is confirmed by the evaluation of a gate-chain TEG and a 16-bit CLA adder fabricated with 0.25-µm MTCMOS/SIMOX technology. Using the modified model, the energy-reduction effect in lowering the supply voltage is evaluated for a single-Vth fully-depleted CMOS/SOI circuit, a dual-Vth CMOS circuit consisting of fully-depleted low- and medium-Vth MOSFETs, and a triple-Vth MTCMOS/SIMOX circuit. The evaluation reveals that lowering the supply voltage of the MTCMOS/SIMOX circuit to 0.5 V is advantageous for the energy reduction at a constant operating speed.

  • Low Power and Low Voltage MOSFETs with Variable Threshold Voltage Controlled by Back-Bias

    Toshiro HIRAMOTO  Makoto TAKAMIYA  

     
    INVITED PAPER

      Vol:
    E83-C No:2
      Page(s):
    161-169

    We have studied the characteristic trade-offs in low power and low voltage MOSFETs from the viewpoint of back-gate control and body effect factor. Previously reported MOSFET structures are classified into four categories in terms of back-gate structures. It is shown that a MOSFET with a fixed back-bias has only a limited current drive at low voltage irrespective of device structures, while current drive of a dynamic threshold MOSFET with body tied to gate is more enhanced with increasing body effect factor. We have proposed a new dynamic threshold MOSFET, electrically induced body (EIB) DTMOS, which has a very large body effect factor at low threshold voltage and high current drive at low supply voltage.

  • FDTD Analysis of Electromagnetic Coupling between Transmission Lines within a Rectangular Enclosure

    Hyun H. PARK  Byung W. KIM  Yeon C. CHUNG  Joo G. LEE  

     
    LETTER-Electromagnetic Compatibility

      Vol:
    E83-B No:1
      Page(s):
    107-109

    The coupling between transmission lines on the PCB (printed circuit board) within a rectangular enclosure with an aperture is investigated by using the finite-difference time-domain (FDTD) method.

  • Development of a High-Tc SQUID Cryo-System for the Measurement of a Remanent Magnetic Field of Rock

    Saburo TANAKA  Ryouji SHIMIZU  Yusuke SAITO  Koichi SHIN  

     
    PAPER-SQUIDs

      Vol:
    E83-C No:1
      Page(s):
    44-48

    A portable cryo-system using a high-Tc SQUID for the measurement of the remanant magnetic field of a rock specimen was designed and fabricated. The sensing surface of the SQUID faces upward in our system, although the system for bio-magnetics faces down. The SQUID is cooled by liquid nitrogen via a sapphire heat transfer rod. The total heat transfer of the system was measured by means of a boiling-off method and was found to be 1.65 W. It was demonstrated that the system can be operated for more than 17 hours without any maintenance such as filling with liquid nitrogen. The system was applied to the measurement of the remanent magnetic field distributions of rock samples cored from deep underground. We have successfully measured the distributions.

  • Annealed Hopfield Neural Network with Moment and Entropy Constraints for Magnetic Resonance Image Classification

    Jzau-Sheng LIN  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:1
      Page(s):
    100-108

    This paper describes the application of an unsupervised parallel approach called the Annealed Hopfield Neural Network (AHNN) using a modified cost function with moment and entropy preservation for magnetic resonance image (MRI) classification. In the AHNN, the neural network architecture is same as the original 2-D Hopfield net. And a new cooling schedule is embedded in order to make the modified energy function to converge to an equilibrium state. The idea is to formulate a clustering problem where the criterion for the optimum classification is chosen as the minimization of the Euclidean distance between training vectors and cluster-center vectors. In this article, the intensity of a pixel in an original image, the first moment combined with its neighbors, and their gray-level entropy are used to construct a 3-component training vector to map a neuron into a two-dimensional annealed Hopfield net. Although the simulated annealing method can yield the global minimum, it is very time-consuming with asymptotic iterations. In addition, to resolve the optimal problem using Hopfield or simulated annealing neural networks, the weighting factors to combine the penalty terms must be determined. The quality of final result is very sensitive to these weighting factors, and feasible values for them are difficult to find. Using the AHNN for magnetic resonance image classification, the need of finding weighting factors in the energy function can be eliminated and the rate of convergence is much faster than that of simulated annealing. The experimental results show that better and more valid solutions can be obtained using the AHNN than the previous approach in classification of the computer generated images. Promising solutions of MRI segmentation can be obtained using the proposed method. In addition, the convergence rates with different cooling schedules in the test phantom will be discussed.

  • Parameter Optimization of Single Flux Quantum Digital Circuits Based on Monte Carlo Yield Analysis

    Nobuyuki YOSHIKAWA  Kaoru YONEYAMA  

     
    PAPER-Digital Applications

      Vol:
    E83-C No:1
      Page(s):
    75-80

    We have developed a parameter optimization tool, Monte Carlo Josephson simulator (MJSIM), for rapid single flux quantum (RSFQ) digital circuits based on a Monte Carlo yield analysis. MJSIM can generate a number of net lists for the JSIM, where all parameter values are varied randomly according to the Gaussian distribution function, and calculate the circuit yields automatically. MJSIM can also produce an improved parameter set using the algorithm of the center-of-gravity method. In this algorithm, an improved parameter vector is derived by calculating the average of parameter vectors inside and outside the operating region. As a case study, we have optimized the circuit parameters of an RS flip-flop, and investigated the validity and efficiency of this optimization method by considering the convergency and initial condition dependence of the final results. We also proposed a method for accelerating the optimization speed by increasing 3σ spreads of the parameter distribution during the optimization.

  • Diffraction Pattern Functions of a Wedge Composed of Metal and Lossless Dielectric Illuminated by an E-Polarized Plane Wave

    Huen-Tae HA  Jung-Woong RA  Se-Yun KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E83-B No:1
      Page(s):
    103-106

    Diffraction pattern functions of an E-polarized scattering by a wedge composed of perfectly conducting metal and lossless dielectric with arbitrary permittivity are analyzed by applying an improved physical optics approximation and its correction. The correction terms are expressed into a complete expansion of the Neumann's series, of which coefficients are calculated numerically to satisfy the null-field condition in the complementary region.

  • An Efficient Method for Reconfiguring the 1 1/2 Track-Switch Mesh Array

    Tadayoshi HORITA  Itsuo TAKANAMI  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E82-D No:12
      Page(s):
    1545-1553

    As VLSI technology has developed, the interest in implementing an entire or significant part of a parallel computer system using wafer scale integration is growing. The major problem for the case is the possibility of drastically low yield and/or reliability of the system if there is no strategy for coping with such situations. Various strategies to restructure the faulty physical system into the fault-free target logical system are described in the literature [1]-[5]. In this paper, we propose an efficient approximate method which can reconstruct the 1 1/2 track-switch mesh arrays with faulty PEs using hardware as well as software. A logical circuit added to each PE and a network connecting the circuits are used to decide spare PEs which compensate for faulty PEs. The hardware compexity of each circuit is much less than that of a PE where the size of each additional circuit is independent of array sizes and constant. By using the exclusive hardware scheme, a built-in self-reconfigurable system without using a host computer is realizable and the time for reconfiguring arrays becomes very short. The simulation result of the performance of the method shows that the reconstructing efficiency of our algorithm is a little less than those of the exaustive and Shigei's ones [6] and [7], but much better than that of the neural one [3]. We also compare the time complexities of reconstructions by hardware as well as software, and the hardware complexity in terms of the number of gates in the logical circuit added to each PE among the other methods.

  • Mean Field Decomposition of a Posteriori Probability for MRF-Based Image Segmentation: Unsupervised Multispectral Textured Image Segmentation

    Hideki NODA  Mehdi N. SHIRAZI  Bing ZHANG  Nobuteru TAKAO  Eiji KAWAGUCHI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1605-1611

    This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of multispectral images consisting of multiple textures. To model such textured images, a hierarchical MRF is used with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method uses the Expectation and Maximization (EM) method for model parameter estimation, where in order to overcome the well-noticed computational problem in the expectation step, we approximate the Baum function using mean-field-based decomposition of a posteriori probability. Given provisionally estimated parameters at each iteration in the EM method, a provisional segmentation is carried out using local a posteriori probability (LAP) of each pixel's region label, which is derived by mean-field-based decomposition of a posteriori probability of the whole region image. Experiments show that the use of LAPs is essential to perform a good image segmentation.

  • Transition of Magnetization Direction in AS-MO Disks

    Junji HIROKANE  Yoshiteru MURAKAMI  Akira TAKAHASHI  Shigeo TERASHIMA  

     
    INVITED PAPER

      Vol:
    E82-C No:12
      Page(s):
    2117-2124

    A standard of Advanced Storage Magneto Optical (AS-MO) having a 6 Gbyte capacity in a 120 mm-diameter single side disk was established by using a magnetically induced superresolution readout method. Transition from in-plane to perpendicular magnetization for exchange-coupled readout layer (GdFeCo) and in-plane magnetization mask layer (GdFe) of the AS-MO disk has been investigated using the noncontinuous model. The readout resolution was sensitive to the thickness of the readout layer. To evaluate readout characteristics of AS-MO disks, the simulation using micro magnetics model was performed and the readout layers were designed. The readout characteristics of the AS-MO disk is improved by making the readout layer thinner.

  • Thermal Stability Study for Anisotropic and Isotropic Hard Disk Media

    Lea Peng TAN  Jian Ping WANG  

     
    PAPER

      Vol:
    E82-C No:12
      Page(s):
    2171-2175

    Thermal stability of anisotropic and isotropic Co alloy thin-film media is investigated. The orientation ratio of CoCrTa(Pt)/Cr media was controlled by the mechanical texture of the NiP/Al substrates. Bulk magnetic properties, delta M curves and time decay of magnetization in the circumferential and radial directions were measured. The maximum magnetic viscosity coefficient calculated from the time decay of magnetization in the circumferential direction was higher than that in the radial direction for a mechanically textured sample, while it was similar in both directions for a non-textured sample. The magnetic viscosity coefficient in the circumferential direction is smaller than that in the radial direction when the reverse field is in the range of the demagnetization field for thin-film recording media. This implies that an anisotropic sample (namely, a sample with a high orientation ratio) will be more thermally stable when it is not exposed to a large external magnetic field.

  • Utilizing Repair Cases of Home Electrical Appliances

    Satoshi HORI  Hiromitsu SUGIMATSU  Soshi FURUKAWA  Hirokazu TAKI  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E82-D No:12
      Page(s):
    1612-1617

    We have developed a diagnostic Case-Based Reasoning (CBR) system, Doctor, which infers possible defects in a home electrical appliance and lists up necessary service parts. The CBR is suitable to build a diagnostic system for the field service because the CBR imitates how experienced service technicians infer and is able to learn defect trends and novel repair cases from a service report database. In order to apply a CBR system to this real-world problem, Our system has the following new features: (1) Its CBR mechanism utilizes not only repair cases, but also diagnostic rules that are elicited from human experts so that accurate diagnosis can be achieved. (2) Its casebase maintenance mechanism updates the casebase and adapts it to the changing real world.

  • Multiscale Object Recognition under Affine Transformation

    Wen-Huei LIN  Chin-Hsing CHEN  Jiann-Shu LEE  Yung-Nien SUN  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:11
      Page(s):
    1474-1482

    A method to recognize planar objects undergoing affine transformation is proposed in this paper. The method is based upon wavelet multiscale features and Hopfield neural networks. The feature vector consists of the multiscale wavelet transformed extremal evolution. The evolution contains the information of the contour primitives in a multiscale manner, which can be used to discriminate dominant points, hence a good initial state of the Hopfield network can be obtained. Such good initiation enables the network to converge more efficiently. A wavelet normalization scheme was applied to make our method scale invariant and to reduce the distortion resulting from normalizing the object contours. The Hopfield neural network was employed as a global processing mechanism for feature matching and made our method suitable to recognize planar objects whose shape distortion arising from an affine transformation. The Hopfield network was improved to guarantee unique and more stable matching results. A new matching evaluation scheme, which is computationally efficient, was proposed to evaluate the goodness of matching. Two sets of images, noiseless and noisy industrial tools, undergoing affine transformation were used to test the performance of the proposed method. Experimental results showed that our method is not only effective and robust under affine transformation but also can limit the effect of noises.

  • A Technique for Extracting Small-Signal Equivalent-Circuit Elements of HEMTs

    Man-Young JEON  Byung-Gyu KIM  Young-Jin JEON  Yoon-Ha JEONG  

     
    PAPER-Low Power-Consumption RF ICs

      Vol:
    E82-C No:11
      Page(s):
    1968-1976

    We propose a new technique that is able to extract the small-signal equivalent-circuit elements of high electron mobility transistors (HEMTs) without causing any gate degradation. For the determination of extrinsic resistance values, unlike other conventional techniques, the proposed technique does not require an additional relationship for the resistances. For the extraction of extrinsic inductance values, the technique uses the R-estimate, which is known to be more robust relative to the measurement errors than the commonly used least-squares regression. Additionally, we suggest an improved cold HEMT model that seems to be more general than conventional cold HEMT models. With the use of the improved cold HEMT model, the proposed technique extracts the extrinsic resistance and inductance values.

  • Simple Expression of Antenna Coupling by Using a Product of Radiation Patterns

    Hiroaki MIYASHITA  Isamu CHIBA  Shuji URASAKI  Shoichiro FUKAO  

     
    PAPER-Antennas and Propagation

      Vol:
    E82-B No:11
      Page(s):
    1867-1873

    Simple approximate formulas are obtained for the mutual impedance and admittance by using a product of radiation patterns of antennas. The formulas come from a stationary expression of the reaction integral between two antennas where far-field approximations are employed. The theory deals with antennas in free space as well as under the presence of a wedge. Two applications are given for microstrip antennas with experimental verifications.

  • Innovative Packaging and Fabrication Concept for a 28 GHz Communication Front-End

    Wolfgang MENZEL  Jurgen KASSNER  Uhland GOEBEL  

     
    INVITED PAPER-RF Assembly Technology

      Vol:
    E82-C No:11
      Page(s):
    2021-2028

    Millimeter-wave systems increasingly are entering into commercial systems, both for communication and sensors for traffic or industrial applications. In many cases, circuit technology of the involved front-ends includes monolithic and hybrid integrated circuits and even waveguide components like filters or antenna feeds. In addition to the standard technical and environmental requirements, these front-ends have to be fabricated in large quantities at very low cost. After a short review of the problems and some general interconnect and packaging techniques for mm-wave front-ends, achievements of a research program will be presented at the example of components for a 28 GHz communication front-end. Emphasis is put on a novel feed-through structure using multilayer carrier substrates for mm-wave circuits, some advances in electromagnetic field coupling for interconnects to mm-wave MMICs, and the realization of packages including waveguide components by plastic injection molding and electroplating. Results of filters and a diplexer produced in this way are shown, including pretuning of the filters to compensate the shrinking of the plastic parts during cooling.

1521-1540hit(1872hit)