The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

221-240hit(2720hit)

  • Outdoor Experiments on Long-Range and Mobile Communications Using 39-GHz Band for 5G and Beyond

    Masashi IWABUCHI  Anass BENJEBBOUR  Yoshihisa KISHIYAMA  Guangmei REN  Chen TANG  Tingjian TIAN  Liang GU  Yang CUI  Terufumi TAKADA  

     
    PAPER

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1437-1446

    This paper presents results of outdoor experiments conducted in the 39-GHz band. In particular, assuming mobile communications such as the fifth generation mobile communications (5G) and beyond, we focus on achieving 1Gbit/s or greater throughput at transmission distances exceeding 1km in the experiments. In order to enhance the data rate and capacity, the use of higher frequency bands above 6GHz for mobile communications is a new and important technical challenge for 5G and beyond. To extend further the benefits of higher frequency bands to various scenarios, it is important to enable higher frequency bands to basically match the coverage levels of existing low frequency bands. Moreover, mobility is important in mobile communications. Therefore, we assume the 39-GHz band as a candidate frequency for 5G and beyond and prepare experimental equipment that utilizes lens antenna and beam tracking technologies. In the experiments, we achieve the throughput values of 2.14Gbit/s at the transmission distance of 1850m and 1.58Gbit/s at 20-km/h mobility. Furthermore, we show the possibility of achieving high throughput even under non-line-of-sight conditions. These experimental results contribute to clarifying the potential for the 39-GHz band to support gigabit-per-second class data rates while still providing coverage and supporting mobility over a coverage area with distance greater than 1km.

  • Green Resource Allocation in OFDMA Networks with Opportunistic Beamforming-Based DF Relaying

    Tao WANG  Mingfang WANG  Yating WU  Yanzan SUN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/04
      Vol:
    E102-B No:8
      Page(s):
    1715-1727

    This paper proposes an energy efficiency (EE) maximized resource allocation (RA) algorithm in orthogonal frequency division multiple access (OFDMA) downlink networks with multiple relays, where a novel opportunistic subcarrier pair based decode-and-forward (DF) protocol with beamforming is used. Specifically, every data transmission is carried out in two consecutive time slots. During every transmission, multiple parallel paths, including relayed paths and direct paths, are established by the proposed RA algorithm. As for the protocol, each subcarrier in the 1st slot can be paired with any subcarrier in 2nd slot to best utilize subcarrier resources. Furthermore, for each relayed path, multiple (not just single or all) relays can be chosen to apply beamforming at the subcarrier in the 2nd slot. Each direct path is constructed by an unpaired subcarrier in either the 1st or 2nd slot. In order to guarantee an acceptable spectrum efficiency, we also introduce a minimum rate constraint. The EE-maximized problem is a highly nonlinear optimization problem, which contains both continuous, discrete variables and has a fractional structure. To solve the problem, the best relay set and resource allocation for a relayed path are derived first, then we design an iterative algorithm to find the optimal RA for the network. Finally, numerical experiments are taken to demonstrate the effectiveness of the proposed algorithm, and show the impact of minimum rate requirement, user number and circuit power on the network EE.

  • New Model of Flaming Phenomena in On-Line Social Networks Caused by Degenerated Oscillation Modes

    Takahiro KUBO  Chisa TAKANO  Masaki AIDA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/01/24
      Vol:
    E102-B No:8
      Page(s):
    1554-1564

    The explosive dynamics present in on-line social networks, typically represented by flaming phenomena, can have a serious impact on not only the sustainable operation of information networks but also on activities in the real world. In order to counter the flaming phenomenon, it is necessary to understand the mechanism underlying the generation of the flaming phenomena within an engineering framework. This paper discusses a new model of the generating mechanism of the flaming phenomena. Our previous study has shown that the cause of flaming phenomena can, by reference to an oscillation model on networks, be understood complex eigenvalues of the matrix formed to describe oscillating phenomena. In this paper, we show that the flaming phenomena can occur due to coupling between degenerated oscillation modes even if all the eigenvalues are real numbers. In addition, we investigate the generation process of flaming phenomena with respect to the initial phases of the degenerated oscillation modes.

  • Performance Analysis of Fiber-Optic Relaying with Simultaneous Transmission and Reception on the Same Carrier Frequency Open Access

    Hiroki UTATSU  Hiroyuki OTSUKA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/02/20
      Vol:
    E102-B No:8
      Page(s):
    1771-1780

    Denser infrastructures can reduce terminal-to-infrastructure distance and thus improve the link budget in mobile communication systems. One such infrastructure, relaying can reduce the distance between the donor evolved node B (eNB) and user equipment (UE). However, conventional relaying suffers from geographical constraints, i.e., installation site, and difficulty in simultaneous transmission and reception on the same carrier frequency. Therefore, we propose a new type of fiber-optic relaying in which the antenna facing the eNB is geographically separated from the antenna facing the UE, and the two antennas are connected by an optical fiber. This structure aims to extend coverage to heavily shadowed areas. Our primary objective is to establish a design method for the proposed fiber-optic relaying in the presence of self-interference, which is the interference between the backhaul and access links, when the backhaul and access links simultaneously operate on the same carrier frequency. In this paper, we present the performance of the fiber-optic relaying in the presence of intra- and inter-cell interferences as well as self-interference. The theoretical desired-to-undesired-signal ratio for both uplink and downlink is investigated as parameters of the optical fiber length. We demonstrate the possibility of fiber-optic relaying with simultaneous transmission and reception on the same carrier frequency for the backhaul and access links. We validate the design method for the proposed fiber-optic relay system using these results.

  • Experimental Evaluation of Synchronized SS-CDMA Transmission Timing Control Method for QZSS Short Message Communication

    Suguru KAMEDA  Kei OHYA  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER-Satellite Communications

      Pubricized:
    2019/01/25
      Vol:
    E102-B No:8
      Page(s):
    1781-1790

    We have already proposed synchronized spread spectrum code division multiple access (SS-CDMA) for the Quasi-Zenith Satellite System (QZSS) safety confirmation system to be used in times of great disaster. In this system, the satellite reception timings of all uplink signals are synchronized using a transmission timing control method in order to realize high-density user multiple access. An issue that should be addressed in order for this system to be viable is the error that can occur in the satellite reception timing. This error occurs due to the terminal time deviation and the error in calculating the propagation delay to the satellite. In this paper, we measure the terminal time deviation and the propagation delay calculation error at the same time by using the same receivers and evaluate the satellite reception timing error of the uplink signal. By this measurement, it is shown that satellite reception timing error within 50ns can be realized in 99.98% of mobile terminals. This shows that the synchronized SS-CDMA with the transmission timing control method has a potential to realize the QZSS short message system with high-density user multiple access.

  • lcyanalysis: An R Package for Technical Analysis in Stock Markets

    Chun-Yu LIU  Shu-Nung YAO  Ying-Jen CHEN  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2019/03/26
      Vol:
    E102-D No:7
      Page(s):
    1332-1341

    With advances in information technology and the development of big data, manual operation is unlikely to be a smart choice for stock market investing. Instead, the computer-based investment model is expected to bring investors more accurate strategic analysis and more effective investment decisions than human beings. This paper aims to improve investor profits by mining for critical information in the stock data, therefore helping big data analysis. We used the R language to find the technical indicators in the stock market, and then applied the technical indicators to the prediction. The proposed R package includes several analysis toolkits, such as trend line indicators, W type reversal patterns, V type reversal patterns, and the bull or bear market. The simulation results suggest that the developed R package can accurately present the tendency of the price and enhance the return on investment.

  • Secure Point-to-Multipoint Communication Using the Spread Spectrum Assisted Orthogonal Frequency Diverse Array in Free Space

    Tao XIE  Jiang ZHU  Qian CHENG  Yifu GUAN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1188-1197

    Wireless communication security has been increasingly important nowadays. Directional modulation (DM) is seen as a promising wireless physical layer security technology. Traditional DM is a transmit-side technology that projects digitally modulated information signals in the desired directions (or at the desired locations) while simultaneously distorting the constellation formats of the same signals in other directions (or at all other locations). However, these directly exposed digitally modulated information signals are easily intercepted by eavesdroppers along the desired directions (or around the desired locations). A new DM scheme for secure point-to-multipoint communication based on the spread spectrum assisted orthogonal frequency diverse array (short for SS-OFDA-M-DM) is proposed in this paper. It can achieve point-to-multipoint secure communication for multiple cooperative receivers at different locations. In the proposed SS-OFDA-M-DM scheme, only cooperative users that use specific DM receivers with right spread spectrum parameters can retrieve right symbols. Eavesdroppers without knowledge of spread spectrum parameters cannot intercept useful signals directly at the desired locations. Moreover, they cannot receive normal symbols at other locations either even if the right spread spectrum parameters are known. Numerical simulation results verify the validity of our proposed scheme.

  • A Reduction of the Number of Components Included in Direct Simulation Type Active Complex Filter Open Access

    Tatsuya FUJII  Kazuhiro SHOUNO  

     
    LETTER-Analog Signal Processing

      Vol:
    E102-A No:6
      Page(s):
    842-844

    In this paper, a reduction of the number of components included in direct simulation type active complex filter is proposed. The proposed method is achieved by sharing NIC's (Negative Impedance Converters) which satisfy some conditions. Compared with the conventional method, the proposed one has wide generality. As an example, a third-order complex elliptic filter is designed. The validity of the proposed method is confirmed through experiment.

  • Transmission Power Control Using Human Motion Classification for Reliable and Energy-Efficient Communication in WBAN

    Sukhumarn ARCHASANTISUK  Takahiro AOYAGI  

     
    PAPER

      Pubricized:
    2018/12/25
      Vol:
    E102-B No:6
      Page(s):
    1104-1112

    Communication reliability and energy efficiency are important issues that have to be carefully considered in WBAN design. Due to the large path loss variation of the WBAN channel, transmission power control, which adaptively adjusts the radio transmit power to suit the channel condition, is considered in this paper. Human motion is one of the dominant factors that affect the channel characteristics in WBAN. Therefore, this paper introduces motion-aware temporal correlation model-based transmission power control that combines human motion classification and transmission power control to provide an effective approach to realizing reliable and energy-efficient WBAN communication. The human motion classification adopted in this study uses only the received signal strength to identify the human motion; no additional tool is required. The knowledge of human motion is then used to accurately estimate the channel condition and suitably select the transmit power. A performance evaluation shows that the proposed method works well both in the low and high WBAN network loads. Compared to using the fixed Tx power of -5dBm, the proposed method had similar packet loss rate but 20-28 and 27-33 percent lower average energy consumption for the low network traffic and high network traffic cases, respectively.

  • Maximum Transmitter Power Set by Fiber Nonlinearity-Induced Bit Error Rate Floors in Non-Repeatered Coherent DWDM Systems

    Xin ZHANG  Yasuhiro AOKI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/12/11
      Vol:
    E102-B No:6
      Page(s):
    1140-1147

    We have comprehensively studied by numerical simulation high power transmission properties through single mode fiber for non-repeatered system application. We have clearly captured bit error rates (BERs) of digital coherent signal exhibit specific floor levels, depending on transmitter powers, due to fiber nonlinearity. If the maximum transmitter powers are defined as the powers at which BER floor levels are 1.0×10-2 without error correction, those are found to be approximately +20.4dBm, +14.8dBm and +10.6dBm, respectively, for single-channel 120Gbps DP-QPSK, DP-16QAM and DP-64QAM formats in large-core and low-loss single-mode silica fibers. In the simulations, we set fiber lengths over 100km, which is much longer than the effective fiber length, thus the results are applicable to any of long-length non-repeatered systems. We also show that the maximum transmitter powers gradually decrease in logarithmic feature with the increase of the number of DWDM channels. The channel number dependence is newly shown to be almost independent on the modulation format. The simulated results have been compared with extended Gaussian-Noise (GN) model with introducing adjustment parameters, not only to confirm the validity of the results but to explore possible new analytical modeling for non-repeatered systems.

  • Design of High-Rate Polar-LDGM Codes for Relay Satellite Communications

    Bin DUO  Junsong LUO  Yong FANG  Yong JIA  Xiaoling ZHONG  Haiyan JIN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/12/03
      Vol:
    E102-B No:6
      Page(s):
    1128-1139

    A high-rate coding scheme that polar codes are concatenated with low density generator matrix (LDGM) codes is proposed in this paper. The scheme, referred to as polar-LDGM (PLG) codes, can boost the convergence speed of polar codes and eliminate the error floor behavior of LDGM codes significantly, while retaining the low encoding and decoding complexity. With a sensibly designed Gaussian approximation (GA), we can accurately predict the theoretical performance of PLG codes. The numerical results show that PLG codes have the potential to approach the capacity limit and avoid error floors effectively. Moreover, the encoding complexity is lower than the existing LDPC coded system. This motives the application of powerful PLG codes to satellite communications in which message transmission must be extremely reliable. Therefore, an adaptive relaying protocol (ARP) based on PLG codes for the relay satellite system is proposed. In ARP, the relay transmission is selectively switched to match the channel conditions, which are determined by an error detector. If no errors are detected, the relay satellite in cooperation with the source satellite only needs to forward a portion of the decoded message to the destination satellite. It is proved that the proposed scheme can remarkably improve the error probability performance. Simulation results illustrate the advantages of the proposed scheme

  • Relationship of Channel and Surface Orientation to Mechanical and Electrical Stresses on N-Type FinFETs

    Wen-Teng CHANG  Shih-Wei LIN  Min-Cheng CHEN  Wen-Kuan YEH  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    429-434

    The electric properties of a field-effect transistor not only depend on gate surface sidewall but also on channel orientation when applying channel stain engineering. The change of the gate surface and channel orientation through the rotated FinFETs provides the capability to compare the orientation dependence of performance and reliability. This study characterized the <100> and <110> channels of FinFETs on the same wafer under tensile and compressive stresses by cutting the wafer into rectangular silicon pieces and evaluated their piezoresistance coefficients. The piezoresistance coefficients of the <100> and <110> silicon under tensile and compressive stresses were first evaluated based on the current setup. Tensile stresses enhance the mobilities of both <100> and <110> channels, whereas compressive stresses degrade them. Electrical characterization revealed that the threshold voltage variation and drive current degradation of the {100} surface were significantly higher than those of {110} for positive bias temperature instability and hot carrier injection with equal gate and drain voltage (VG=VD). By contrast, insignificant difference is noted for the subthreshold slope degradation. These findings imply that a higher ratio of bulk defect trapping is generated by gate voltage on the <100> surface than that on the <110> surface.

  • Design of Integrated High Voltage Pulse Generator for Medical Ultrasound Transmitters

    Deng-Fong LU  Chin HSIA  Jian-Chiun LIOU  Yen-Chung HUANG  

     
    PAPER

      Pubricized:
    2018/12/28
      Vol:
    E102-B No:6
      Page(s):
    1121-1127

    Design of an equivalent slew-rate monolithic pulse generator using bipolar-CMOS-DMOS (BCD) technology for medical ultrasound transmitters is presented in this paper. The pulse generator employs a floating capacitive coupling level-shifter architecture to produce a high-voltage (Vpp=80V) output. The performance of equivalent slew-rate in the rising and falling edge is achieved by carefully choosing the value of coupling capacitors and the size of the final stage high-voltage MOSFETs of the pulse generator. The measured output pulses show the rising and falling time of 8.6nsec and 8.5nsec, respectively with second harmonic distortion down to -40dBc, indicating the designed pulse generator can be used for advanced ultrasonic harmonic imaging systems.

  • Concurrent Transmission Scheduling for Perceptual Data Sharing in mmWave Vehicular Networks

    Akihito TAYA  Takayuki NISHIO  Masahiro MORIKURA  Koji YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    952-962

    Sharing perceptual data (e.g., camera and LiDAR data) with other vehicles enhances the traffic safety of autonomous vehicles because it helps vehicles locate other vehicles and pedestrians in their blind spots. Such safety applications require high throughput and short delay, which cannot be achieved by conventional microwave vehicular communication systems. Therefore, millimeter-wave (mmWave) communications are considered to be a key technology for sharing perceptual data because of their wide bandwidth. One of the challenges of data sharing in mmWave communications is broadcasting because narrow-beam directional antennas are used to obtain high gain. Because many vehicles should share their perceptual data to others within a short time frame in order to enlarge the areas that can be perceived based on shared perceptual data, an efficient scheduling for concurrent transmission that improves spatial reuse is required for perceptual data sharing. This paper proposes a data sharing algorithm that employs a graph-based concurrent transmission scheduling. The proposed algorithm realizes concurrent transmission to improve spatial reuse by designing a rule that is utilized to determine if the two pairs of transmitters and receivers interfere with each other by considering the radio propagation characteristics of narrow-beam antennas. A prioritization method that considers the geographical information in perceptual data is also designed to enlarge perceivable areas in situations where data sharing time is limited and not all data can be shared. Simulation results demonstrate that the proposed algorithm doubles the area of the cooperatively perceivable region compared with a conventional algorithm that does not consider mmWave communications because the proposed algorithm achieves high-throughput transmission by improving spatial reuse. The prioritization also enlarges the perceivable region by a maximum of 20%.

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • Secure Transmission in Wireless Powered Communication Networks with Full-Duplex Receivers

    Qun LI  Ding XU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:5
      Page(s):
    750-754

    This letter studies secure communication in a wireless powered communication network with a full-duplex destination node, who applies either power splitting (PS) or time switching (TS) to coordinate energy harvesting and information decoding of received signals and transmits jamming signals to the eavesdropper using the harvested energy. The secrecy rate is maximized by optimizing PS or TS ratio and power allocation. We propose iterative algorithms with power allocation optimized by the successive convex approximation method. Simulation results demonstrate that the proposed algorithms are superior to other benchmark algorithms.

  • Distributed Estimation over Delayed Sensor Network with Scalable Communication Open Access

    Ryosuke ADACHI  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Vol:
    E102-A No:5
      Page(s):
    712-720

    This paper proposes a distributed delay-compensated observer for a wireless sensor network with delay. Each node of the sensor network aggregates data from the other nodes and sends the aggregated data to the neighbor nodes. In this communication, each node also compensates communication delays among the neighbor nodes. Therefore, all of the nodes can synchronize their sensor measurements using scalable and local communication in real-time. All of the nodes estimate the state variables of a system simultaneously. The observer in each node is similar to the delay-compensated observer with multi-sensor delays proposed by Watanabe et al. Convergence rates for the proposed observer can be arbitrarily designed regardless of the communication delays. The effectiveness of the proposed method is verified by a numerical simulation.

  • Wide-Sense Nonblocking W-S-W Node Architectures for Elastic Optical Networks

    Wojciech KABACIŃSKI  Mustafa ABDULSAHIB  Marek MICHALSKI  

     
    PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    978-991

    This paper considers wide-sense nonblocking operation of the Wavelength-Space-Wavelength elastic optical switch. Six control algorithms, based on functional spectrum decomposition in interstage links and functional decomposition of center stage switches, are proposed for two switching fabric architectures. For these algorithms we derived wide-sense nonblocking conditions and compared them with strict-sense nonblocking ones. The results show that the proposed algorithm reduces the required number of frequency slot units (FSUs) or center stage switches, depending on the switching fabric architecture. Savings occur even when connections use small number of frequency slot units.

  • Sum Throughput Maximization for MIMO Wireless Powered Communication Networks with Discrete Signal Inputs

    Feng KE  Xiaoyu HUANG  Weiliang ZENG  Yuqin LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/10/26
      Vol:
    E102-B No:5
      Page(s):
    1037-1044

    Wireless powered communication networks (WPCNs) utilize the wireless energy transfer (WET) technique to facilitate the wireless information transmission (WIT) of nodes. We propose a two-step iterative algorithm to maximize the sum throughput of the users in a MIMO WPCN with discrete signal inputs. Firstly, the optimal solution of a convex power allocation problem can be found given a fixed time allocation; Secondly, a semi closed form solution for the optimal time allocation is obtained when fixing the power allocation matrix. By optimizing the power allocation and time allocation alternately, the two-step algorithm converges to a local optimal point. Simulation results show that the proposed algorithm outperforms the conventional schemes, which consider only Gaussian inputs.

  • A Novel Energy-Efficient Packet Transmission Protocol for Cluster-Based Cooperative Network

    Jianming CHENG  Yating GAO  Leiqin YAN  Hongwen YANG  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    768-778

    Cooperative communication can reduce energy consumption effectively due to its superior diversity gain. To further prolong network lifetime and improve the energy efficiency, this paper studies energy-efficient packet transmission in wireless ad-hoc networks and proposes a novel cluster-based cooperative packet transmission (CCPT) protocol to mitigate the packet loss and balance the energy consumption of networks. The proposed CCPT protocol first constructs a highly energy-efficient initial routing path based on the required energy cost of non-cooperative transmission. Then an iterative cluster recruitment algorithm is proposed that selects cooperative nodes and organizing them into clusters, which can create transmit diversity in each hop of communication. Finally, a novel two-step cluster-to-cluster cooperative transmission scheme is designed, where all cluster members cooperatively forward the packet to the next-hop cluster. Simulation results show that the CCPT protocol effectively reduces the energy cost and prolongs the network lifetime compared with the previous CwR and noC schemes. The results also have shown that the proposed CCPT protocol outperforms the traditional CwR protocol in terms of transmit efficiency per energy, which indicates that CCPT protocol has achieved a better trade-off between energy and packet arrival ratio.

221-240hit(2720hit)