The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

141-160hit(2720hit)

  • Comprehensive Feasibility Study on Direct Spectrum Division Transmission over Multiple Satellite Transponders

    Fumihiro YAMASHITA  Daisuke GOTO  Yasuyoshi KOJIMA  Jun-ichi ABE  Takeshi ONIZAWA  

     
    PAPER-Satellite Communications

      Pubricized:
    2020/10/22
      Vol:
    E104-B No:4
      Page(s):
    446-454

    We have developed a direct spectrum division transmission (DSDT) technique that can divide a single-carrier signal into multiple sub-spectra and assign them to dispersed frequency resources of the satellite transponder to improve the spectrum efficiency of the whole system. This paper summarizes the satellite experiments on DSDT over a single and/or multiple satellite transponders, while changing various parameters such as modulation schemes, roll-off ratios, and symbol rates. In addition, by considering practical use conditions, we present an evaluation of the performance when the spectral density of each sub-spectrum differed across transponders. The satellite experiments demonstrate that applying the proposal does not degrade the bit error rate (BER) performance. Thus, the DSDT technique is a practical approach to use the scattered unused frequency resources over not only a single transponder but also multiple ones.

  • Channel Characteristics and Link Budget Analysis for 10-60MHz Band Implant Communication

    Md Ismail HAQUE  Ryosuke YAMADA  Jingjing SHI  Jianqing WANG  Daisuke ANZAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/10/15
      Vol:
    E104-B No:4
      Page(s):
    410-418

    Channel modeling is a vital step in designing transceivers for wireless implant communication systems due to the extremely challenging environment of the human body. In this paper, the in-to-on body path loss and group delay were first analyzed using an electric dipole and a current loop in the 10-60MHz human body communication band. A path loss model was derived using finite difference time domain (FDTD) simulation and an anatomical human body model. As a result, it was found that the path loss increases with distance in an exponent of 5.6 for dipole and 3.9 for loop, and the group delay variation is within 1ns for both dipole and loop which suggests a flat phase response. Moreover, the electric and magnetic field distributions revealed that the magnetic field components dominate in-body signal transmission in this frequency band. Based on the analysis results of the implant channel, the link budget was analyzed. An experiment on a prototype transceiver was also performed to validate the path loss model and bit error rate (BER) performance. The experimentally derived path loss exponent was between the electric dipole path loss exponent and the current loop path loss exponent, and the BER measurement showed the feasibility of 20Mbps implant communication up to a body depth of at least 15cm.

  • Distributed Observer Design on Sensor Networks with Random Communication

    Yuh YAMASHITA  Haruka SUMITA  Ryosuke ADACHI  Koichi KOBAYASHI  

     
    PAPER-Systems and Control

      Pubricized:
    2020/09/09
      Vol:
    E104-A No:3
      Page(s):
    613-621

    This paper proposes a distributed observer on a sensor network, where communication on the network is randomly performed. This work is a natural extension of Kalman consensus filter approach to the cases involving random communication. In both bidirectional and unidirectional communication cases, gain conditions that guarantee improvement of estimation error convergence compared to the case with no communication are obtained. The obtained conditions are more practical than those of previous studies and give appropriate cooperative gains for a given communication probability. The effectiveness of the proposed method is confirmed by computer simulations.

  • Optimization by Neural Networks in the Coherent Ising Machine and its Application to Wireless Communication Systems Open Access

    Mikio HASEGAWA  Hirotake ITO  Hiroki TAKESUE  Kazuyuki AIHARA  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/01
      Vol:
    E104-B No:3
      Page(s):
    210-216

    Recently, new optimization machines based on non-silicon physical systems, such as quantum annealing machines, have been developed, and their commercialization has been started. These machines solve the problems by searching the state of the Ising spins, which minimizes the Ising Hamiltonian. Such a property of minimization of the Ising Hamiltonian can be applied to various combinatorial optimization problems. In this paper, we introduce the coherent Ising machine (CIM), which can solve the problems in a milli-second order, and has higher performance than the quantum annealing machines especially on the problems with dense mutual connections in the corresponding Ising model. We explain how a target problem can be implemented on the CIM, based on the optimization scheme using the mutually connected neural networks. We apply the CIM to traveling salesman problems as an example benchmark, and show experimental results of the real machine of the CIM. We also apply the CIM to several combinatorial optimization problems in wireless communication systems, such as channel assignment problems. The CIM's ultra-fast optimization may enable a real-time optimization of various communication systems even in a dynamic communication environment.

  • Control of 120-GHz-Band Split Ring Resonator Filter by Coupling Lattice Pattern Substrate

    Koichiro ITAKURA  Akihiko HIRATA  Masato SONODA  Taiki HIGASHIMOTO  Tadao NAGATSUMA  Takashi TOMURA  Jiro HIROKAWA  Norihiko SEKINE  Issei WATANABE  Akifumi KASAMATSU  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/09/08
      Vol:
    E104-C No:3
      Page(s):
    102-111

    This paper presents a 120-GHz-band split ring resonator (SRR) bandstop filter whose insertion loss can be controlled by coupling another lattice pattern substrate. The SRR bandstop filter and lattice pattern substrate is composed of 200-µm-thick quartz substrate and 5-µm-thick gold patterns. S21 of the SRR bandstop filter is -37.8 dB, and its -10-dB bandwidth is 115-130 GHz. S21 of the SRR bandstop filter changes to -4.1 dB at 125 GHz by arranging the lattice pattern substrate in close proximity to the SRR stopband filter, because coupling between the SRR and the lattice pattern occurs when the SRR and lattice pattern are opposed in close proximity. It was found that 10 Gbit/s data transmission can be achieved by setting the lattice pattern substrate just above the SRR bandstop filter with a spacer thickness of 50 µm, even though data transmission is impossible when only the SRR bandstop filter is inserted between the transmitter and the receiver.

  • Packet Processing Architecture with Off-Chip Last Level Cache Using Interleaved 3D-Stacked DRAM Open Access

    Tomohiro KORIKAWA  Akio KAWABATA  Fujun HE  Eiji OKI  

     
    PAPER-Network System

      Pubricized:
    2020/08/06
      Vol:
    E104-B No:2
      Page(s):
    149-157

    The performance of packet processing applications is dependent on the memory access speed of network systems. Table lookup requires fast memory access and is one of the most common processes in various packet processing applications, which can be a dominant performance bottleneck. Therefore, in Network Function Virtualization (NFV)-aware environments, on-chip fast cache memories of a CPU of general-purpose hardware become critical to achieve high performance packet processing speeds of over tens of Gbps. Also, multiple types of applications and complex applications are executed in the same system simultaneously in carrier network systems, which require adequate cache memory capacities as well. In this paper, we propose a packet processing architecture that utilizes interleaved 3 Dimensional (3D)-stacked Dynamic Random Access Memory (DRAM) devices as off-chip Last Level Cache (LLC) in addition to several levels of dedicated cache memories of each CPU core. Entries of a lookup table are distributed in every bank and vault to utilize both bank interleaving and vault-level memory parallelism. Frequently accessed entries in 3D-stacked DRAM are also cached in on-chip dedicated cache memories of each CPU core. The evaluation results show that the proposed architecture reduces the memory access latency by 57%, and increases the throughput by 100% while reducing the blocking probability but about 10% compared to the architecture with shared on-chip LLC. These results indicate that 3D-stacked DRAM can be practical as off-chip LLC in parallel packet processing systems.

  • Sequence-Based Schemes for Broadcast and Unicast under Frequency Division Duplex

    Fang LIU  Kenneth W. SHUM  Yijin ZHANG  Wing Shing WONG  

     
    INVITED PAPER-Communication Theory and Signals

      Vol:
    E104-A No:2
      Page(s):
    376-383

    We consider all-to-all broadcast and unicast among nodes in a multi-channel single-hop ad hoc network, with no time synchronization. Motivated by the hard delay requirement for ultra-reliable and low-latency communication (URLLC) in 5G wireless networks, we aim at designing medium access control (MAC) schemes to guarantee successful node-to-node transmission within a bounded delay. To provide a hard guarantee on the transmission delay, deterministic sequence schemes are preferred to probabilistic schemes such as carrier sense multiple access (CSMA). Therefore, we mainly consider sequence schemes, with the goal to design schedule sequence set to guarantee successful broadcast/unicast within a common sequence period. This period should be as short as possible since it determines an upper bound on the transmission delay. In previous works, we have considered sequence design under time division duplex (TDD). In this paper, we focus on another common duplex mode, frequency division duplex (FDD). For the FDD case, we present a lower bound on period of feasible sequence sets, and propose a sequence construction method by which the sequence period can achieve the same order as the lower bound, for both broadcast and unicast models. We also compare the sequence length for FDD with that for TDD.

  • Subcarrier and Interleaver Assisted Burst Impulsive Noise Mitigation in Power Line Communication

    Zhouwen TAN  Ziji MA  Hongli LIU  Keli PENG  Xun SHAO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/11/02
      Vol:
    E104-D No:2
      Page(s):
    246-253

    Impulsive noise (IN) is the most dominant factor degrading the performance of communication systems over powerlines. In order to improve performance of high-speed power line communication (PLC), this work focuses on mitigating burst IN effects based on compressive sensing (CS), and an adaptive burst IN mitigation method, namely combination of adaptive interleaver and permutation of null carriers is designed. First, the long burst IN is dispersed by an interleaver at the receiver and the characteristic of noise is estimated by the method of moment estimation, finally, the generated sparse noise is reconstructed by changing the number of null carriers(NNC) adaptively according to noise environment. In our simulations, the results show that the proposed IN mitigation technique is simple and effective for mitigating burst IN in PLC system, it shows the advantages to reduce the burst IN and to improve the overall system throughput. In addition, the performance of the proposed technique outpeformences other known nonlinear noise mitigation methods and CS methods.

  • Dynamic Regret Analysis for Event-Triggered Distributed Online Optimization Algorithm

    Makoto YAMASHITA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    430-437

    This paper considers a distributed subgradient method for online optimization with event-triggered communication over multi-agent networks. At each step, each agent obtains a time-varying private convex cost function. To cooperatively minimize the global cost function, these agents need to communicate each other. The communication with neighbor agents is conducted by the event-triggered method that can reduce the number of communications. We demonstrate that the proposed online algorithm achieves a sublinear regret bound in a dynamic environment with slow dynamics.

  • Generation Method of Two-Dimensional Optical ZCZ Sequences with High Correlation Peak Value

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E104-A No:2
      Page(s):
    417-421

    In this paper, we propose new generation methods of two-dimensional (2D) optical zero-correlation zone (ZCZ) sequences with the high peak autocorrelation amplitude. The 2D optical ZCZ sequence consists of a pair of a binary sequence which takes 1 or 0 and a bi-phase sequence which takes 1 or -1, and has a zero-correlation zone in the two-dimensional correlation function. Because of these properties, the 2D optical ZCZ sequence is suitable for optical code-division multiple access (OCDMA) system using an LED array having a plurality of light-emitting elements arranged in a lattice pattern. The OCDMA system using the 2D optical ZCZ sequence can be increased the data rate and can be suppressed interference by the light of adjacent LEDs. By using the proposed generation methods, we can improve the peak autocorrelation amplitude of the sequence. This means that the BER performance of the OCDMA system using the sequence can be improved.

  • Generation and Detection of Media Clones Open Access

    Isao ECHIZEN  Noboru BABAGUCHI  Junichi YAMAGISHI  Naoko NITTA  Yuta NAKASHIMA  Kazuaki NAKAMURA  Kazuhiro KONO  Fuming FANG  Seiko MYOJIN  Zhenzhong KUANG  Huy H. NGUYEN  Ngoc-Dung T. TIEU  

     
    INVITED PAPER

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    12-23

    With the spread of high-performance sensors and social network services (SNS) and the remarkable advances in machine learning technologies, fake media such as fake videos, spoofed voices, and fake reviews that are generated using high-quality learning data and are very close to the real thing are causing serious social problems. We launched a research project, the Media Clone (MC) project, to protect receivers of replicas of real media called media clones (MCs) skillfully fabricated by means of media processing technologies. Our aim is to achieve a communication system that can defend against MC attacks and help ensure safe and reliable communication. This paper describes the results of research in two of the five themes in the MC project: 1) verification of the capability of generating various types of media clones such as audio, visual, and text derived from fake information and 2) realization of a protection shield for media clones' attacks by recognizing them.

  • Optimal Planning of Emergency Communication Network Using Deep Reinforcement Learning Open Access

    Changsheng YIN  Ruopeng YANG  Wei ZHU  Xiaofei ZOU  Junda ZHANG  

     
    PAPER-Network

      Pubricized:
    2020/06/29
      Vol:
    E104-B No:1
      Page(s):
    20-26

    Aiming at the problems of traditional algorithms that require high prior knowledge and weak timeliness, this paper proposes an emergency communication network topology planning method based on deep reinforcement learning. Based on the characteristics of the emergency communication network, and drawing on chess, we map the node layout and topology planning problems in the network planning to chess game problems; The two factors of network coverage and connectivity are considered to construct the evaluation criteria for network planning; The method of combining Monte Carlo tree search and self-game is used to realize network planning sample data generation, and the network planning strategy network and value network structure based on residual network are designed. On this basis, the model was constructed and trained based on Tensorflow library. Simulation results show that the proposed planning method can effectively implement intelligent planning of network topology, and has excellent timeliness and feasibility.

  • 2.65Gbps Downlink Communications with Polarization Multiplexing in X-Band for Small Earth Observation Satellite Open Access

    Tomoki KANEKO  Noriyuki KAWANO  Yuhei NAGAO  Keishi MURAKAMI  Hiromi WATANABE  Makoto MITA  Takahisa TOMODA  Keiichi HIRAKO  Seiko SHIRASAKA  Shinichi NAKASUKA  Hirobumi SAITO  Akira HIROSE  

     
    POSITION PAPER-Satellite Communications

      Pubricized:
    2020/07/01
      Vol:
    E104-B No:1
      Page(s):
    1-12

    This paper reports our new communication components and downlink tests for realizing 2.65Gbps by utilizing two circular polarizations. We have developed an on-board X-band transmitter, an on-board dual circularly polarized-wave antenna, and a ground station. In the on-board transmitter, we optimized the bias conditions of GaN High Power Amplifier (HPA) to linearize AM-AM performance. We have also designed and fabricated a dual circularly polarized-wave antenna for low-crosstalk polarization multiplexing. The antenna is composed of a corrugated horn antenna and a septum-type polarizer. The antenna achieves Cross Polarization Discrimination (XPD) of 37-43dB in the target X-band. We also modify an existing 10m ground station antenna by replacing its primary radiator and adding a polarizer. We put the polarizer and Low Noise Amplifiers (LNAs) in a cryogenic chamber to reduce thermal noise. Total system noise temperature of the antenna is 58K (maximum) for 18K physical temperature when the angle of elevation is 90° on a fine winter day. The dual circularly polarized-wave ground station antenna has 39.0dB/K of Gain - system-noise Temperature ratio (G/T) and an XPD higher than 37dB. The downlinked signals are stored in a data recorder at the antenna site. Afterwards, we decoded the signals by using our non-real-time software demodulator. Our system has high frequency efficiency with a roll-off factor α=0.05 and polarization multiplexing of 64APSK. The communication bits per hertz corresponds to 8.41bit/Hz (2.65Gbit/315MHz). The system is demonstrated in orbit on board the RAPid Innovative payload demonstration Satellite (RAPIS-1). RAPIS-1 was launched from Uchinoura Space Center on January 19th, 2019. We decoded 1010 bits of downlinked R- and L-channel signals and found that the downlinked binary data was error free. Consequently, we have achieved 2.65Gbps communication speed in the X-band for earth observation satellites at 300 Mega symbols per second (Msps) and polarization multiplexing of 64APSK (coding rate: 4/5) for right- and left-hand circular polarizations.

  • Preventing Fake Information Generation Against Media Clone Attacks Open Access

    Noboru BABAGUCHI  Isao ECHIZEN  Junichi YAMAGISHI  Naoko NITTA  Yuta NAKASHIMA  Kazuaki NAKAMURA  Kazuhiro KONO  Fuming FANG  Seiko MYOJIN  Zhenzhong KUANG  Huy H. NGUYEN  Ngoc-Dung T. TIEU  

     
    INVITED PAPER

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    2-11

    Fake media has been spreading due to remarkable advances in media processing and machine leaning technologies, causing serious problems in society. We are conducting a research project called Media Clone aimed at developing methods for protecting people from fake but skillfully fabricated replicas of real media called media clones. Such media can be created from fake information about a specific person. Our goal is to develop a trusted communication system that can defend against attacks of media clones. This paper describes some research results of the Media Clone project, in particular, various methods for protecting personal information against generating fake information. We focus on 1) fake information generation in the physical world, 2) anonymization and abstraction in the cyber world, and 3) modeling of media clone attacks.

  • Optical Wireless Communication: A Candidate 6G Technology? Open Access

    Shintaro ARAI  Masayuki KINOSHITA  Takaya YAMAZATO  

     
    INVITED PAPER

      Vol:
    E104-A No:1
      Page(s):
    227-234

    We discuss herein whether an optical wireless communication (OWC) system can be a candidate for post 5G or 6G cellular communication. Almost once per decade, cellular mobile communication is transformed by a significant evolution, with each generation developing a distinctive concept or technology. Interestingly, similar trends have occurred in OWC systems based on visible light and light fidelity (Li-Fi). Unfortunately, OWC is currently relegated to a limited role in any 5G scenario, but the debate whether this is unavoidable has yet to be settled. Whether OWC is adopted post 5G or 6G is not the vital issue; rather, the aim should be that OWC coexists with 5G and 6G communication technologies. In working toward this goal, research and development in OWC will continue to extend its benefits and standardize its systems so that it can be widely deployed in the market. For example, given that a standard already exists for a visible-light beacon identifier and Li-Fi, a service using this standard should be developed to satisfy user demand. Toward this end, we propose herein a method for visible-light beacon identification that involves using a rolling shutter to receive visible-light communications with a smartphone camera. In addition, we introduce a rotary LED transmitter for image-sensor communication.

  • DC-Balanced Improvement of Interlaken Protocol

    Sarat YOOWATTANA  Mongkol EKPANYAPONG  

     
    PAPER-Network

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    27-34

    High-speed serial data communication is essential for connecting peripherals in high-performance computing systems. Interlaken is a high-speed serial data communication protocol that has been widely adopted in various applications as it can run on multiple medias such as PCBs, blackplans or over cables. The Interlaken uses 64b/67b line coding to maintain the run length (RL) and the running disparity (RD) with the advantage of an inversion bit that indicates whether the receiver must flip the data or not. By using the inversion bit, it increases 1bit overhead to every data word. This paper proposes 64b/i67b line coding technique for encoding and decoding to improve the cumulative running disparity of 64b/67b without additional bit overhead. The results have been obtained from simulations that use random data and the Squash data set, and the proposed method reduces the maximum cumulative running disparity value up to 33%.

  • An Optimal Power Allocation Scheme for Device-to-Device Communications in a Cellular OFDM System

    Gil-Mo KANG  Cheolsoo PARK  Oh-Soon SHIN  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/06/02
      Vol:
    E103-A No:12
      Page(s):
    1670-1673

    We propose an optimal power allocation scheme that maximizes the transmission rate of device-to-device (D2D) communications underlaying a cellular system based on orthogonal frequency division multiplexing (OFDM). The proposed algorithm first calculates the maximum allowed transmission power of a D2D transmitter to restrict the interference caused to a cellular link that share the same OFDM subchannels with the D2D link. Then, with a constraint on the maximum transmit power, an optimization of water-filling type is performed to find the optimal transmit power allocation across subchannels and within each subchannel. The performance of the proposed power allocation scheme is evaluated in terms of the average achievable rate of the D2D link.

  • Flex-LIONS: A Silicon Photonic Bandwidth-Reconfigurable Optical Switch Fabric Open Access

    Roberto PROIETTI  Xian XIAO  Marjan FARIBORZ  Pouya FOTOUHI  Yu ZHANG  S. J. Ben YOO  

     
    INVITED PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1190-1198

    This paper summarizes our recent studies on architecture, photonic integration, system validation and networking performance analysis of a flexible low-latency interconnect optical network switch (Flex-LIONS) for datacenter and high-performance computing (HPC) applications. Flex-LIONS leverages the all-to-all wavelength routing property in arrayed waveguide grating routers (AWGRs) combined with microring resonator (MRR)-based add/drop filtering and multi-wavelength spatial switching to enable topology and bandwidth reconfigurability to adapt the interconnection to different traffic profiles. By exploiting the multiple free spectral ranges of AWGRs, it is also possible to provide reconfiguration while maintaining minimum-diameter all-to-all interconnectivity. We report experimental results on the design, fabrication, and system testing of 8×8 silicon photonic (SiPh) Flex-LIONS chips demonstrating error-free all-to-all communication and reconfiguration exploiting different free spectral ranges (FSR0 and FSR1, respectively). After reconfiguration in FSR1, the bandwidth between the selected pair of nodes is increased from 50Gb/s to 125Gb/s while an all interconnectivity at 25Gb/s is maintained using FSR0. Finally, we investigate the use of Flex-LIONS in two different networking scenarios. First, networking simulations for a 256-node datacenter inter-rack communication scenario show the potential latency and energy benefits when using Flex-LIONS for optical reconfiguration based on different traffic profiles (a legacy fat-tree architecture is used for comparison). Second, we demonstrate the benefits of leveraging two FSRs in an 8-node 64-core computing system to provide reconfiguration for the hotspot nodes while maintaining minimum-diameter all-to-all interconnectivity.

  • A Study on Optimal Design of Optical Devices Utilizing Coupled Mode Theory and Machine Learning

    Koji KUDO  Keita MORIMOTO  Akito IGUCHI  Yasuhide TSUJI  

     
    PAPER

      Pubricized:
    2020/03/25
      Vol:
    E103-C No:11
      Page(s):
    552-559

    We propose a new design approach to improve the computational efficiency of an optimal design of optical waveguide devices utilizing coupled mode theory (CMT) and a neural network (NN). Recently, the NN has begun to be used for efficient optimal design of optical devices. In this paper, the eigenmode analysis required in the CMT is skipped by using the NN, and optimization with an evolutionary algorithm can be efficiently carried out. To verify usefulness of our approach, optimal design examples of a wavelength insensitive 3dB coupler, a 1 : 2 power splitter, and a wavelength demultiplexer are shown and their transmission properties obtained by the CMT with the NN (NN-CMT) are verified by comparing with those calculated by a finite element beam propagation method (FE-BPM).

  • Field-Trial Experiments of an IoT-Based Fiber Networks Control and Management-Plane Early Disaster Recovery via Narrow-Band and Lossy Links System (FRENLL)

    Sugang XU  Goshi SATO  Masaki SHIRAIWA  Katsuhiro TEMMA  Yasunori OWADA  Noboru YOSHIKANE  Takehiro TSURITANI  Toshiaki KURI  Yoshinari AWAJI  Naruto YONEMOTO  Naoya WADA  

     
    PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1214-1225

    Large-scale disasters can lead to a severe damage or destruction of optical transport networks including the data-plane (D-plane) and control and management-plane (C/M-plane). In addition to D-plane recovery, quick recovery of the C/M-plane network in modern software-defined networking (SDN)-based fiber optical networks is essential not only for emergency control of surviving optical network resources, but also for quick collection of information related to network damage/survivability to enable the optimal recovery plan to be decided as early as possible. With the advent of the Internet of Things (IoT) technologies, low energy consumption, and low-cost IoT devices have been more common. Corresponding long-distance networking technologies such as low-power wide-area (LPWA) and LPWA-based mesh (LPWA-mesh) networks promise wide coverage sensing and environment data collection capabilities. We are motivated to take an infrastructure-less IoT approach to provide long-distance, low-power and inexpensive wireless connectivity and create an emergency C/M-plane network for early disaster recovery. In this paper, we investigate the feasibility of fiber networks C/M-plane recovery using an IoT-based extremely narrow-band, and lossy links system (FRENLL). For the first time, we demonstrate a field-trial experiment of a long-latency/loss tolerable SDN C/M-plane that can take advantage of widely available IoT resources and easy-to-create wireless mesh networks to enable the timely recovery of the C/M-plane after disaster.

141-160hit(2720hit)