Ryosuke ADACHI Yuh YAMASHITA Koichi KOBAYASHI
In this paper, we consider the design problem of an unknown-input observer for distributed network systems under the existence of communication delays. In the proposed method, each node estimates all states and calculates inputs from its own estimate. It is assumed that the controller of each node is given by an observer-based controller. When calculating each node, the input values of the other nodes cannot be utilized. Therefore, each node calculates alternative inputs instead of the unknown inputs of the other nodes. The alternative inputs are generated by own estimate based on the feedback controller of the other nodes given by the assumption. Each node utilizes these values instead of the unknown inputs when calculating the estimation and delay compensation. The stability of the estimation error of the proposed observer is proven by a Lyapunov-Krasovskii functional. The stability condition is given by a linear matrix inequality (LMI). Finally, the result of a numerical simulation is shown to verify the effectiveness of the proposed method.
Kenji KITA Hiroshi GOTOH Hiroyasu ISHIKAWA Hideyuki SHINONAGA
Power line communications (PLC) is a communication technology that uses a power-line as a transmission medium. Previous studies have shown that connecting an AC adapter such as a mobile phone charger to the power-line affects signal quality. Therefore, in this paper, the authors analyze the influence of chargers on inter-computer communications using packet capture to evaluate communications quality. The analysis results indicate the occurrence of a short duration in which packets are not detected once in a half period of the power-line supply: named communication forbidden time. For visualizing the communication forbidden time and for evaluating the communications quality of the inter-computer communications using PLC, the authors propose an instantaneous power-line frequency synchronized superimposed chart and its plotting algorithm. Further, in order to analyze accurately, the position of the communication forbidden time can be changed by altering the initial burst signal plotting position. The difference in the chart, which occurs when the plotting start position changes, is also discussed. We show analysis examples using the chart for a test bed data assumed an ideal environment, and show the effectiveness of the chart for analyzing PLC inter-computer communications.
Akira John SUZUKI Masahiro YAMAMOTO Kiyoshi MIZUI
There is currently much interest in the development of Optic Wireless and Visible Light Communication (VLC) systems in the ITS field. Research in VLC and boomerang systems in particular often remain at a theoretical or computer-simulated level. This paper reports the 3-stage development of a boomerang prototype communication and ranging system using visible light V2V communication via LEDs and photodiodes, with direct-sequence spread spectrum techniques. The system uses simple and widely available components aiming for a low-cost frugal innovation approach. Results show that while we have to improve the prototype distance measurement unit due to a margin of error, simultaneous communication and ranging is possible with our newly designed prototype. The benefits of further research and development of boomerang technology prototypes are confirmed.
This paper proposes a method for searching for graphs in the database which are contained as subgraphs by a given query. In the proposed method, the search index does not require any knowledge of the query set or the frequent subgraph patterns. In conventional techniques, enumerating and selecting frequent subgraph patterns is computationally expensive, and the distribution of the query set must be known in advance. Subsequent changes to the query set require the frequent patterns to be selected again and the index to be reconstructed. The proposed method overcomes these difficulties through graph coding, using a tree structured index that contains infrequent subgraph patterns in the shallow part of the tree. By traversing this code tree, we are able to rapidly determine whether multiple graphs in the database contain subgraphs that match the query, producing a powerful pruning or filtering effect. Furthermore, the filtering and verification steps of the graph search can be conducted concurrently, rather than requiring separate algorithms. As the proposed method does not require the frequent subgraph patterns and the query set, it is significantly faster than previous techniques; this independence from the query set also means that there is no need to reconstruct the search index when the query set changes. A series of experiments using a real-world dataset demonstrate the efficiency of the proposed method, achieving a search speed several orders of magnitude faster than the previous best.
Yun ZHANG Bingrui LI Shujuan YU Meisheng ZHAO
In this paper, we propose a new scheme which uses blind detection algorithm for recovering the conventional user signal in a system which the sporadic machine-to-machine (M2M) communication share the same spectrum with the conventional user. Compressive sensing techniques are used to estimate the M2M devices signals. Based on the Hopfield neural network (HNN), the blind detection algorithm is used to recover the conventional user signal. The simulation results show that the conventional user signal can be effectively restored under an unknown channel. Compared with the existing methods, such as using the training sequence to estimate the channel in advance, the blind detection algorithm used in this paper with no need for identifying the channel, and can directly detect the transmitted signal blindly.
Ran SUN Hiromasa HABUCHI Yusuke KOZAWA
For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.
Takuma IWATA Kohei NAKAMURA Yuta TOKUSASHI Hiroki MATSUTANI
In statistical analysis and data mining, change-point detection that identifies the change-points which are times when the probability distribution of time series changes has been used for various purposes, such as anomaly detections on network traffic and transaction data. However, computation cost of a conventional AR (Auto-Regression) model based approach is too high and infeasible for online. In this paper, an AR model based online change-point detection algorithm, called ChangeFinder, is implemented on an FPGA (Field Programmable Gate Array) based NIC (Network Interface Card). The proposed system computes the change-point score from time series data received from 10GbE (10Gbit Ethernet). More specifically, it computes the change-point score at the 10GbE NIC in advance of host applications. It can find change-points on single or multiple streams using a context memory. This paper aims to reduce the host workload and improve change-point detection performance by offloading ChangeFinder algorithm from host to the NIC. As evaluations, change-point detection in the FPGA NIC is compared with a baseline software implementation and those enhanced by two network optimization techniques using DPDK and Netfilter in terms of throughput. The result demonstrates 16.8x improvement in change-point detection throughput compared to the baseline software implementation. It is corresponding to the 10GbE line rate. Performance and area overheads when supporting multiple streams are also evaluated.
Jin MITSUGI Yuki SATO Yuusuke KAWAKITA Haruhisa ICHIKAWA
Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.
Masaaki YAMANAKA ShenCong WEI Jingbo ZOU Shuichi OHNO Shinichi MIYAMOTO Seiichi SAMPEI
This paper proposes a secure distributed transmission method that establishes multiple transmission routes in space to a destination. In the method, the transmitted information is divided into pieces of information by a secret-sharing method, and the generated pieces are separately transmitted to the destination through different transmission routes using individually-controlled antenna directivities. As the secret-sharing method can divide the transmitted information into pieces in such a manner that nothing about the original information is revealed unless all the divided pieces are obtained, the secrecy of the transmitted information is greatly improved from an information-theoretic basis. However, one problem is that it does not perform well in the vicinity around the receiver. This is due to the characteristics of distributed transmission that all distributed pieces of information must eventually gather at the destination; an eavesdropper can obtain the necessary pieces to reconstruct the original information. Then, this paper expands the distributed transmission method into a two-way communication scheme. By adopting the distributed transmission in both communication directions, a secure link can be provided as a feedback channel to enhance the secrecy of the transmitted information. The generation of the shared pieces of information is given with signal forms, and the secrecy of the proposed method is evaluated based on the signal transmission error rates as determined by computer simulation.
Xijian ZHONG Yan GUO Ning LI Shanling LI Aihong LU
In the large-scale multi-UAV systems, the direct link may be invalid for two remote nodes on account of the constrained power or complex communication environment. Idle UAVs may work as relays between the sources and destinations to enhance communication quality. In this letter, we investigate the opportunistic relay selection for the UAVs dynamic network. On account of the time-varying channel states and the variable numbers of sources and relays, relay selection becomes much more difficult. In addition, information exchange among all nodes may bring much cost and it is difficult to implement in practice. Thus, we propose a decentralized relay selection approach based on mood-driven mechanism to combat the dynamic characteristics, aiming to maximize the total capacity of the network without information exchange. With the proposed approach, the sources can make decisions only according to their own current states and update states according to immediate rewards. Numerical results show that the proposed approach has attractive properties.
Yosei SHIBATA Ryosuke SAITO Takahiro ISHINABE Hideo FUJIKAKE
In this study, we examined the mechanical durability and self-recovery characterization of liquid crystal gel films with lysine-based gelator. The results indicated that the structural destruction in liquid crystal gel films is attributed to dissociation among network structure. The cracked LC gel films can be recovered by formation of sol-sate films.
Yuan ZHOU Yuichi GOTO Jingde CHENG
Many kinds of questionnaires, testing, and voting are performed in some completely electronic ways to do questions and answers on the Internet as Web applications, i.e. e-questionnaire systems, e-testing systems, and e-voting systems. Because there is no unified communication tool among the stakeholders of e-questionnaire, e-testing, and e-voting systems, until now, all the e-questionnaire, e-testing, and e-voting systems are designed, developed, used, and maintained in various ad hoc ways. As a result, the stakeholders are difficult to communicate to implement the systems, because there is neither an exhaustive requirement list to have a grasp of the overall e-questionnaire, e-testing, and e-voting systems nor a standardized terminology for these systems to avoid ambiguity. A general-purpose specification language to provide a unified description way for specifying various e-questionnaire, e-testing, and e-voting systems can solve the problems such that the stakeholders can refer to and use the complete requirements and standardized terminology for better communications, and can easily and unambiguously specify all the requirements of systems and services of e-questionnaire, e-testing, and e-voting, even can implement the systems. In this paper, we propose the first specification language, named “QSL,” with a standardized, consistent, and exhaustive list of requirements for specifying various e-questionnaire, e-testing, and e-voting systems such that the specifications can be used as the precondition of automatically generating e-questionnaire, e-testing, and e-voting systems. The paper presents our design addressing that QSL can specify all the requirements of various e-questionnaire, e-testing, and e-voting systems in a structured way, evaluates its effectiveness, performs real applications using QSL in case of e-questionnaire, e-testing, and e-voting systems, and shows various QSL applications for providing convenient QSL services to stakeholders.
Tomoya KAGEYAMA Osamu MUTA Haris GACANIN
In this paper, we propose an enhanced selected mapping (e-SLM) technique to improve the performance of OFDM-PLC systems under impulsive noise. At the transmitter, the best transmit sequence is selected from among possible candidates so as to minimize the weighted sum of transmit signal peak power and the estimated receive one, where the received signal peak power is estimated at the transmitter using channel state information (CSI). At the receiver, a nonlinear blanking is applied to hold the impulsive noise under a given threshold, where impulsive noise detection accuracy is improved by the proposed e-SLM. We evaluate the probability of false alarms raised by impulsive noise detection and bit error rate (BER) of OFDM-PLC system using the proposed e-SLM. The results show the effectiveness of the proposed method in OFDM-PLC system compared with the conventional blanking technique.
Tomohiko MITANI Shogo KAWASHIMA Naoki SHINOHARA
A retrodirective system utilizing harmonic reradiation from a rectenna is developed and verified for long-range wireless power transfer applications, such as low-power or battery-less devices and lightweight aerial vehicles. The second harmonic generated by the rectifying circuit is used instead of a pilot signal, and thus an oscillator for creating the pilot signal is not required. The proposed retrodirective system consists of a 2.45 GHz transmitter with a two-element phased array antenna, a 4.9 GHz direction-of-arrival (DoA) estimation system, a phase control system, and a rectenna. The rectenna, consisting of a half-wave dipole antenna, receives microwave power from the 2.45 GHz transmitter and reradiates the harmonic toward the 4.9 GHz DoA estimation system. The rectenna characteristics and experimental demonstrations of the proposed retrodirective system are described. From measurement results, the dc output power pattern for the developed retrodirective system is in good agreement with that obtained using manual beam steering. The measured DoA estimation errors are within the range of -2.4° to 4.8°.
In this paper, a new transceiver system for the in-vehicle communication system is proposed to enhance data transmission rate and timing accuracy in TDM-based application. The proposed system utilizes point-to-point (P2P) channel, a closed-loop clock forwarding path, and a transceiver with a repeater and clock delay adjuster. The proposed system with 4 ECU (Electronic Computing Unit) nodes is implemented in 180nm CMOS technology and, when compared with conventional bus-based system, achieved more than 125 times faster data transmission. The maximum data rate was 2.5Gbps at 1.8V power supply and the worst peak-to-peak jitter for the data and clock signals over 5000 data symbols were about 49.6ps and 9.8ps respectively.
Xiao XU Tsuyoshi SUGIURA Toshihiko YOSHIMASU
This paper presents two ultra-low voltage and high performance VCO ICs with novel harmonic tuned LC tank which provides different harmonic impedance and shapes the pseudo-square drain voltage waveform of transistors. In the novel tank, two additional inductors are connected between the drains of the cross-coupled pMOSFETs and the conventional LC tank, and they effectively decrease second harmonic load impedance and increase third harmonic load impedance of the transistors. In this paper, the novel harmonic tuned LC tank is applied to two different structure VCOs. These two VCOs exhibit over 2 dB better phase noise performance than conventional LC tank VCOs among all tuning range. The conventional and proposed VCO ICs are designed, fabricated and measured on wafer in 45-nm SOI CMOS technology. With novel harmonic tuned LC tank, the novel two VCOs exhibit measured best phase-noise of -125.7 and -129.3 dBc/Hz at 10 MHz offset and related FoM of -190.2 and -190.5 dBc/Hz at a supply voltage of 0.3 V and 0.35 V, respectively. Frequency tuning range of the two VCOs are from 13.01 to 14.34 GHz and from 15.02 to 16.03GHz, respectively.
Tsuyoshi SUGIURA Satoshi FURUTA Tadamasa MURAKAMI Koki TANJI Norihisa OTANI Toshihiko YOSHIMASU
This paper presents high efficiency Class-E and compact Doherty power amplifiers (PAs) with novel harmonics termination for handset applications using a GaAs/InGaP heterojunction bipolar transistor (HBT) process. The novel harmonics termination circuit effectively reduces the insertion loss of the matching circuit, allowing a device with a compact size. The Doherty PA uses a lumped-element transformer which consists of metal-insulator-metal (MIM) capacitors on an IC substrate, a bonding-wire inductor and short micro-strip lines on a printed circuit board (PCB). The fabricated Class-E PA exhibits a power added efficiency (PAE) as high as 69.0% at 1.95GHz and as high as 67.6% at 2.535GHz. The fabricated Doherty PA exhibits an average output power of 25.5dBm and a PAE as high as 50.1% under a 10-MHz band width quadrature phase shift keying (QPSK) 6.16-dB peak-to-average-power-ratio (PAPR) LTE signal at 1.95GHz. The fabricated chip size is smaller than 1mm2. The input and output Doherty transformer areas are 0.5mm by 1.0mm and 0.7mm by 0.7mm, respectively.
Envelope tracking (ET) technology provides the potential for achieving high efficiency in power amplifiers (PAs) with high peak-to-average ratio (PAR) signals. Envelope amplifiers with high fidelity, high efficiency, and wide bandwidth are critical components for the widespread application of envelope tracking. This paper presents the design of a linear-assisted switching buck converter for use in an envelope amplifier. To effectively leverage the high efficiency of buck converters and the wide bandwidth capabilities of linear amplifiers, a parallel combination of these two devices is employed in this work. A novel current-sense constant-on-time (COT) controller is proposed to coordinate this hybrid power supply. The combination mainly enables the switching converter to provide the average power required by the PA with high efficiency, while the wideband linear amplifier provides a wide range of dynamic voltages. The technique improves the efficiency of the envelope amplifier, especially for applications requiring high PAR with wider bandwidth signals. Measurement of the envelope amplifier showed an efficiency of approximately 77% with 10 W output power using LTE downlink signals. The overall ET system was demonstrated by using a GaN PA. The measured average power-added efficiency of the amplifier reached above 45% for an LTE modulated signal with 20 MHz bandwidth and PAR of 8.0 dB, at an average output power of 5 W and gain of 10.1 dB. The measured normalized RMS error is below 2.1% with adjacent channel leakage ratio of -48 dBc at an offset frequency of 20 MHz.
Guoqiang CHENG Qingquan HUANG Zhi LIN Xiangshuai TAO Jian OUYANG Guodong WU
In this paper, we consider a hybrid satellite terrestrial cooperative network with a multi-antenna relay where the satellite links follows the shadowed-Rician fading and the terrestrial link undergoes the correlated Rayleigh fading. Specifically, two different channel state information (CSI) assumptions are considered: 1) full CSI at the relay; 2) full CSI of satellite-relay link and statistical CSI of relay-destination link at the relay. In addition, selection combining (SC) or maximal ratio combining (MRC) are used at the destination to combine the signals from direct link and relay link. By considering the above four cases, we derived the closed-form expressions for the outage probability (OP) respectively. Furthermore, the asymptotic OP expressions at high signal-to-noise (SNR) are developed to reveal the diversity orders and the array gains of the considered network. Finally, numerical results are provided to validate our analytical expressions as well as the system performance for different cases.
Akihito TAYA Takayuki NISHIO Masahiro MORIKURA Koji YAMAMOTO
In millimeter wave (mmWave) vehicular communications, multi-hop relay disconnection by line-of-sight (LOS) blockage is a critical problem, particularly in the early diffusion phase of mmWave-available vehicles, where not all vehicles have mmWave communication devices. This paper proposes a distributed position control method to establish long relay paths through road side units (RSUs). This is realized by a scheme via which autonomous vehicles change their relative positions to communicate with each other via LOS paths. Even though vehicles with the proposed method do not use all the information of the environment and do not cooperate with each other, they can decide their action (e.g., lane change and overtaking) and form long relays only using information of their surroundings (e.g., surrounding vehicle positions). The decision-making problem is formulated as a Markov decision process such that autonomous vehicles can learn a practical movement strategy for making long relays by a reinforcement learning (RL) algorithm. This paper designs a learning algorithm based on a sophisticated deep reinforcement learning algorithm, asynchronous advantage actor-critic (A3C), which enables vehicles to learn a complex movement strategy quickly through its deep-neural-network architecture and multi-agent-learning mechanism. Once the strategy is well trained, vehicles can move independently to establish long relays and connect to the RSUs via the relays. Simulation results confirm that the proposed method can increase the relay length and coverage even if the traffic conditions and penetration ratio of mmWave communication devices in the learning and operation phases are different.