The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

81-100hit(2720hit)

  • A Novel e-Cash Payment System with Divisibility Based on Proxy Blind Signature in Web of Things

    Iuon-Chang LIN  Chin-Chen CHANG  Hsiao-Chi CHIANG  

     
    PAPER-Information Network

      Pubricized:
    2022/09/02
      Vol:
    E105-D No:12
      Page(s):
    2092-2103

    The prosperous Internet communication technologies have led to e-commerce in mobile computing and made Web of Things become popular. Electronic payment is the most important part of e-commerce, so many electronic payment schemes have been proposed. However, most of proposed schemes cannot give change. Based on proxy blind signatures, an e-cash payment system is proposed in this paper to solve this problem. This system can not only provide change divisibility through Web of Things, but also provide anonymity, verifiability, unforgeability and double-spending owner track.

  • Boosting the Performance of Interconnection Networks by Selective Data Compression

    Naoya NIWA  Hideharu AMANO  Michihiro KOIBUCHI  

     
    PAPER

      Pubricized:
    2022/07/12
      Vol:
    E105-D No:12
      Page(s):
    2057-2065

    This study presents a selective data-compression interconnection network to boost its performance. Data compression virtually increases the effective network bandwidth. One drawback of data compression is a long latency to perform (de-)compression operation at a compute node. In terms of the communication latency, we explore the trade-off between the compression latency overhead and the reduced injection latency by shortening the packet length by compression algorithms. As a result, we present to selectively apply a compression technique to a packet. We perform a compression operation to long packets and it is also taken when network congestion is detected at a source compute node. Through a cycle-accurate network simulation, the selective compression method using the above compression algorithms improves by up to 39% the network throughput with a moderate increase in the communication latency of short packets.

  • SDNRCFII: An SDN-Based Reliable Communication Framework for Industrial Internet

    Hequn LI  Die LIU  Jiaxi LU  Hai ZHAO  Jiuqiang XU  

     
    PAPER-Network

      Pubricized:
    2022/05/26
      Vol:
    E105-B No:12
      Page(s):
    1508-1518

    Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • Opportunities, Challenges, and Solutions in the 5G Era Open Access

    Chien-Chi KAO  Hey-Chyi YOUNG  

     
    INVITED PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1291-1298

    For many countries in the world, 5G is of strategic significance. In the 5G era, telecom operators are expected to enable and provide multiple services with different communication characteristics like enhanced broadband, ultra-reliable and extreme real-time communications at the same time. To meet the requirements, the 5G network essentially will be more complex compared with traditional 3G/4G networks. The unique characteristics of 5G resulted from new technologies bring a lot of opportunities as well as significant challenges. In this paper we first introduce 5G vision and check the global status. And then we illustrate the 5G technical essentials and point out the new opportunities that 5G will bring to us. We also highlight the coming challenges and share our 5G experience and solutions toward 5G vision in many aspects, including network, management and business.

  • Convergence of the Hybrid Implicit-Explicit Single-Field FDTD Method Based on the Wave Equation of Electric Field

    Kazuhiro FUJITA  

     
    BRIEF PAPER

      Pubricized:
    2022/03/24
      Vol:
    E105-C No:11
      Page(s):
    696-699

    The hybrid implicit-explicit single-field finite-difference time-domain (HIE-SF-FDTD) method based on the wave equation of electric field is reformulated in a concise matrix-vector form. The global approximation error of the scheme is discussed theoretically. The second-order convergence of the HIE-SF-FDTD is numerically verified.

  • 4-Cycle-Start-Up Reference-Clock-Less Digital CDR Utilizing TDC-Based Initial Frequency Error Detection with Frequency Tracking Loop Open Access

    Tetsuya IIZUKA  Meikan CHIN  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    544-551

    This paper proposes a reference-clock-less quick-start-up CDR that resumes from a stand-by state only with a 4-bit preamble utilizing a phase generator with an embedded Time-to-Digital Converter (TDC). The phase generator detects 1-UI time interval by using its internal TDC and works as a self-tunable digitally-controlled delay line. Once the phase generator coarsely tunes the recovered clock period, then the residual time difference is finely tuned by a fine Digital-to-Time Converter (DTC). Since the tuning resolution of the fine DTC is matched by design with the time resolution of the TDC that is used as a phase detector, the fine tuning completes instantaneously. After the initial coarse and fine delay tuning, the feedback loop for frequency tracking is activated in order to improve Consecutive Identical Digits (CID) tolerance of the CDR. By applying the frequency tracking architecture, the proposed CDR achieves more than 100bits of CID tolerance. A prototype implemented in a 65nm bulk CMOS process operates at a 0.9-2.15Gbps continuous rate. It consumes 5.1-8.4mA in its active state and 42μA leakage current in its stand-by state from a 1.0V supply.

  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • Polar Code Based on Nested Rate Adaptation Sequence for BDS-3 Regional Short Message Communication

    Gang LI  Shuren GUO  Yi ZHOU  Zaixiu YANG  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/04/20
      Vol:
    E105-B No:10
      Page(s):
    1280-1289

    Regional Short Message Communication (RSMC) service of BeiDou Navigation Satellite System (BDS) has been widely used in various fields. BDS-3 officially started to provide service in 2020, and the performance of RSMC service was greatly improved, which offers an opportunity for large-scale applications of RSMC in consumer electronic products. Due to the complex application scenarios, the low-cost and low-power of RSMC terminals, a better coding scheme is needed to improve performance. In this paper, we propose a new polar encoding scheme with low code rate and variable code length, which adopts Polarization Weight (PW) to generate the reliability sequence of Polar codes and use a Nested Rate Adaptation Sequence (NRAS) to realize rate adaption for the BDS-3 RSMC. The performance of encoding gain and decoding complexity is analyzed by simulation and experiments. The results validate the effective of this scheme. Compared with Turbo codes, the proposed polar codes scheme achieves about 0.5dB gain with about 50% decoding complexity when the information length including CRC is 128 and code rate is 1/2. The proposed polar codes scheme provides a good reference for further applications in BDS.

  • Communication Quality Estimation Observer: An Approach for Integrated Communication Quality Estimation and Control for Digital-Twin-Assisted Cyber-Physical Systems Open Access

    Ryogo KUBO  

     
    INVITED PAPER

      Pubricized:
    2022/04/14
      Vol:
    E105-B No:10
      Page(s):
    1139-1153

    Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.

  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • Sputtering Gas Pressure Dependence on the LaBxNy Insulator Formation for Pentacene-Based Back-Gate Type Floating-Gate Memory with an Amorphous Rubrene Passivation Layer

    Eun-Ki HONG  Kyung Eun PARK  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    589-595

    In this research, the effect of Ar/N2-plasma sputtering gas pressure on the LaBxNy tunnel and block layer was investigated for pentacene-based floating-gate memory with an amorphous rubrene (α-rubrene) passivation layer. The influence of α-rubrene passivation layer for memory characteristic was examined. The pentacene-based metal/insulator/metal/insulator/semiconductor (MIMIS) diode and organic field-effect transistor (OFET) were fabricated utilizing N-doped LaB6 metal layer and LaBxNy insulator with α-rubrene passivation layer at annealing temperature of 200°C. In the case of MIMIS diode, the leakage current density and the equivalent oxide thickness (EOT) were decreased from 1.2×10-2 A/cm2 to 1.1×10-7 A/cm2 and 3.5 nm to 3.1 nm, respectively, by decreasing the sputtering gas pressure from 0.47 Pa to 0.19 Pa. In the case of floating-gate type OFET with α-rubrene passivation layer, the larger memory window of 0.68 V was obtained with saturation mobility of 2.2×10-2 cm2/(V·s) and subthreshold swing of 199 mV/dec compared to the device without α-rubrene passivation layer.

  • Joint Channel and Power Assignment for UAV Swarm Communication Based on Multi-Agent DRL

    Jie LI  Sai LI  Abdul Hayee SHAIKH  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1249-1257

    In this manuscript, we propose a joint channel and power assignment algorithm for an unmanned aerial vehicle (UAV) swarm communication system based on multi-agent deep reinforcement learning (DRL). Regarded as an agent, each UAV to UAV (U2U) link can choose the optimal channel and power according to the current situation after training is successfully completed. Further, a mixing network is introduced based on DRL, where Q values of every single agent are non-linearly mapped, and we call it the QMIX algorithm. As it accesses state information, QMIX can learn to enrich the joint action value function. The proposed method can be used for both unicast and multicast scenarios. Experiments show that each U2U link can be trained to meet the constraints of UAV communication and minimize the interference to the system. For unicast communication, the communication rate is increased up to 15.6% and 8.9% using the proposed DRL method compared with the well-known random and adaptive methods, respectively. For multicast communication, the communication rate is increased up to 6.7% using the proposed QMIX method compared with the DRL method and 13.6% using DRL method compared with adaptive method. Besides, the successful transmission probability can maintain a high level.

  • 13.56MHz Half-Bridge GaN-HEMT Resonant Inverter Achieving High Power, Low Distortion, and High Efficiency by ‘L-S Network’ Open Access

    Aoi OYANE  Thilak SENANAYAKE  Mitsuru MASUDA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:9
      Page(s):
    407-418

    This paper proposes a topology of high power, MHz-frequency, half-bridge resonant inverter ideal for low-loss Gallium Nitride high electron mobility transistor (GaN-HEMT). General GaN-HEMTs have drawback of low drain-source breakdown voltage. This property has prevented conventional high-frequency series resonant inverters from delivering high power to high resistance loads such as 50Ω, which is typically used in radio frequency (RF) systems. High resistance load causes hard-switching also and reduction of power efficiency. The proposed topology overcomes these difficulties by utilizing a proposed ‘L-S network’. This network is effective combination of a simple impedance converter and a series resonator. The proposed topology provides not only high power for high resistance load but also arbitrary design of output wattage depending on impedance conversion design. In addition, the current through the series resonator is low in the L-S network. Hence, this series resonator can be designed specifically for harmonic suppression with relatively high quality-factor and zero reactance. Low-distortion sinusoidal 3kW output is verified in the proposed inverter at 13.56MHz by computer simulations. Further, 99.4% high efficiency is achieved in the power circuit in 471W experimental prototype.

  • Changes in Calling Parties' Behavior Caused by Settings for Indirect Control of Call Duration under Disaster Congestion Open Access

    Daisuke SATOH  Takemi MOCHIDA  

     
    PAPER-General Fundamentals and Boundaries

      Pubricized:
    2022/05/10
      Vol:
    E105-A No:9
      Page(s):
    1358-1371

    The road space rationing (RSR) method regulates a period in which a user group can make telephone calls in order to decrease the call attempt rate and induce calling parties to shorten their calls during disaster congestion. This paper investigates what settings of this indirect control induce more self-restraint and how the settings change calling parties' behavior using experimental psychology. Our experiments revealed that the length of the regulated period differently affected calling parties' behavior (call duration and call attempt rate) and indicated that the 60-min RSR method (i.e., 10 six-min periods) is the most effective setting against disaster congestion.

  • Development of a Blockchain-Based Online Secret Electronic Voting System

    Young-Sung IHM  Seung-Hee KIM  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/05/16
      Vol:
    E105-D No:8
      Page(s):
    1361-1372

    This paper presents the design, implementation, and verification of a blockchain-based online electronic voting system that ensures accuracy and reliability in electronic voting and its application to various types of voting using blockchain technologies, such as distributed ledgers and smart contracts. Specifically, in this study, the connection between the electronic voting system and blockchain nodes is simplified using the REST API design, and the voting opening and counting information is designed to store the latest values in the distributed ledger in JSON format, using a smart contract that cannot be falsified. The developed electronic voting system can provide blockchain authentication, secret voting, forgery prevention, ballot verification, and push notification functions, all of which are currently not supported in existing services. Furthermore, the developed system demonstrates excellence on all evaluation items, including 101 transactions per second (TPS) of blockchain online authentication, 57.6 TPS of secret voting services, 250 TPS of forgery prevention cases, 547 TPS of read transaction processing, and 149 TPS of write transaction processing, along with 100% ballot verification service, secret ballot authentication, and encryption accuracy. Functional and performance verifications were obtained through an external test certification agency in South Korea. Our design allows for blockchain authentication, non-forgery of ballot counting data, and secret voting through blockchain-based distributed ledger technology. In addition, we demonstrate how existing electronic voting systems can be easily converted to blockchain-based electronic voting systems by applying a blockchain-linked REST API. This study greatly contributes to enabling electronic voting using blockchain technology through cost reductions, information restoration, prevention of misrepresentation, and transparency enhancement for a variety of different forms of voting.

  • A Slotted Access-Inspired Group Paging Scheme for Resource Efficiency in Cellular MTC Networks

    Linh T. HOANG  Anh-Tuan H. BUI  Chuyen T. NGUYEN  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    944-958

    Deployment of machine-type communications (MTCs) over the current cellular network could lead to severe overloading of the radio access network of Long Term Evolution (LTE)-based systems. This paper proposes a slotted access-based solution, called the Slotted Access For Group Paging (SAFGP), to cope with the paging-induced MTC traffic. The proposed SAFGP splits paged devices into multiple access groups, and each group is then allocated separate radio resources on the LTE's Physical Random Access Channel (PRACH) in a periodic manner during the paging interval. To support the proposed scheme, a new adaptive barring algorithm is proposed to stabilize the number of successful devices in each dedicated access slot. The objective is to let as few devices transmitting preambles in an access slot as possible while ensuring that the number of preambles selected by exactly one device approximates the maximum number of uplink grants that can be allocated by the eNB for an access slot. Analysis and simulation results demonstrate that, given the same amount of time-frequency resources, the proposed method significantly improves the access success and resource utilization rates at the cost of slightly increasing the access delay compared to state-of-the-art methods.

  • On a Cup-Stacking Concept in Repetitive Collective Communication

    Takashi YOKOTA  Kanemitsu OOTSU  Shun KOJIMA  

     
    LETTER-Computer System

      Pubricized:
    2022/04/15
      Vol:
    E105-D No:7
      Page(s):
    1325-1329

    Parallel computing essentially consists of computation and communication and, in many cases, communication performance is vital. Many parallel applications use collective communications, which often dominate the performance of the parallel execution. This paper focuses on collective communication performance to speed-up the parallel execution. This paper firstly offers our experimental result that splitting a session of collective communication to small portions (slices) possibly enables efficient communication. Then, based on the results, this paper proposes a new concept cup-stacking with a genetic algorithm based methodology. The preliminary evaluation results reveal the effectiveness of the proposed method.

  • Channel Arrangement Design in Lumped Amplified WDM Transmission over NZ-DSF Link with Nonlinearity Mitigation Using Optical Phase Conjugation Open Access

    Shimpei SHIMIZU  Takayuki KOBAYASHI  Takeshi UMEKI  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    805-813

    Optical phase conjugation (OPC) is an all-optical signal processing technique for mitigating fiber nonlinearity and is promising for building cost-efficient fiber networks with few optic-electric-optic conversions and long amplification spacing. In lumped amplified systems, OPC has a little nonlinearity mitigation efficiency for nonlinear distortion induced by cross-phase modulation (XPM) due to the asymmetry of power and chromatic dispersion (CD) maps during propagation in transmission fiber. In addition, the walk-off of XPM-induced noise becomes small due to the CD compensation effect of OPC, so the deterministic nonlinear distortion increases. Therefore, lumped amplified transmission systems with OPC are more sensitive to channel spacing than conventional systems. In this paper, we show the channel spacing dependence of NZ-DSF transmission using amplification repeater with OPC. Numerical simulations show comprehensive characteristics between channel spacing and CD in a 100-Gbps/λ WDM signal. An experimental verification using periodically poled LiNbO3-based OPC is also performed. These results suggest that channel spacing design is more important in OPC-assisted systems than in conventional dispersion-unmanaged systems.

81-100hit(2720hit)