The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NIC(2720hit)

21-40hit(2720hit)

  • Effect of Perceptually Uniform Color Space and Diversity of Chromaticity Components on Digital Signage and Image Sensor-Based Visible Light Communication Open Access

    Kazuya SHIMEI  Kentaro KOBAYASHI  Wataru CHUJO  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2023/08/07
      Vol:
    E107-A No:4
      Page(s):
    638-653

    We study a visible light communication (VLC) system that modulates data signals by changing the color components of image contents on a digital signage display, captures them with an image sensor, and demodulates them using image processing. This system requires that the modulated data signals should not be perceived by the human eye. Previous studies have proposed modulation methods with a chromaticity component that is difficult for the human eye to perceive, and we have also proposed a modulation method with perceptually uniform color space based on human perception characteristics. However, which chromaticity component performs better depends on the image contents, and the evaluation only for some specific image contents was not sufficient. In this paper, we evaluate the communication and visual quality of the modulation methods with chromaticity components for various standard images to clarify the superiority of the method with perceptually uniform color space. In addition, we propose a novel modulation and demodulation method using diversity combining to eliminate the dependency of performance on the image contents. Experimental results show that the proposed method can improve the communication and visual quality for almost all the standard images.

  • A Complete Library of Cross-Bar Gate Logic with Three Control Inputs

    Ryosuke MATSUO  Shin-ichi MINATO  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/09/06
      Vol:
    E107-A No:3
      Page(s):
    566-574

    Logic circuits based on a photonic integrated circuit (PIC) have attracted significant interest due to their ultra-high-speed operation. However, they have a fundamental disadvantage that a large amount of the optical signal power is discarded in the path from the optical source to the optical output, which results in significant power consumption. This optical signal power loss is called a garbage output. To address this issue, this paper considers a circuit design without garbage outputs. Although a method for synthesizing an optical logic circuit without garbage outputs is proposed, this synthesis method can not obtain the optimal solution, such as a circuit with the minimum number of gates. This paper proposes a cross-bar gate logic (CBGL) as a new logic structure for optical logic circuits without garbage outputs, moreover enumerates the CBGLs with the minimum number of gates for all three input logic functions by an exhaustive search. Since the search space is vast, our enumeration algorithm incorporates a technique to prune it efficiently. Experimental results for all three-input logic functions demonstrate that the maximum number of gates required to implement the target function is five. In the best case, the number of gates in enumerated CBGLs is one-half compared to the existing method for optical logic circuits without garbage outputs.

  • Communication-Efficient Distributed Orthogonal Approximate Message Passing for Sparse Signal Recovery

    Ken HISANAGA  Motohiko ISAKA  

     
    PAPER-Signal Processing

      Pubricized:
    2023/08/30
      Vol:
    E107-A No:3
      Page(s):
    493-502

    In this paper, we introduce a framework of distributed orthogonal approximate message passing for recovering sparse vector based on sensing by multiple nodes. The iterative recovery process consists of local computation at each node, and global computation performed either by a particular node or joint computation on the overall network by exchanging messages. We then propose a method to reduce the communication cost between the nodes while maintaining the recovery performance.

  • CoVR+: Design of Visual Effects for Promoting Joint Attention During Shared VR Experiences via a Projection of HMD User's View

    Akiyoshi SHINDO  Shogo FUKUSHIMA  Ari HAUTASAARI  Takeshi NAEMURA  

     
    PAPER

      Pubricized:
    2023/12/14
      Vol:
    E107-D No:3
      Page(s):
    374-382

    A user wearing a Head-Mounted Display (HMD) is likely to feel isolated when sharing virtual reality (VR) experiences with Non-HMD users in the same physical space due to not being able to see the real space outside the virtual world. This research proposes a method for an HMD user to recognize the Non-HMD users' gaze and attention via a projector attached to the HMD. In the proposed approach, the projected HMD user's view is filtered darker than default, and when Non-HMD users point controllers towards the projected view, the filter is removed from a circular area for both HMD and Non-HMD users indicating which region the Non-HMD users are viewing. We conducted two user studies showing that the Non-HMD users' gaze can be recognized with the proposed method, and investigated the preferred range for the alpha value and the size of the area for removing the filter for the HMD user.

  • Location and History Information Aided Efficient Initial Access Scheme for High-Speed Railway Communications

    Chang SUN  Xiaoyu SUN  Jiamin LI  Pengcheng ZHU  Dongming WANG  Xiaohu YOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/14
      Vol:
    E107-B No:1
      Page(s):
    214-222

    The application of millimeter wave (mmWave) directional transmission technology in high-speed railway (HSR) scenarios helps to achieve the goal of multiple gigabit data rates with low latency. However, due to the high mobility of trains, the traditional initial access (IA) scheme with high time consumption is difficult to guarantee the effectiveness of the beam alignment. In addition, the high path loss at the coverage edge of the millimeter wave remote radio unit (mmW-RRU) will also bring great challenges to the stability of IA performance. Fortunately, the train trajectory in HSR scenarios is periodic and regular. Moreover, the cell-free network helps to improve the system coverage performance. Based on these observations, this paper proposes an efficient IA scheme based on location and history information in cell-free networks, where the train can flexibly select a set of mmW-RRUs according to the received signal quality. We specifically analyze the collaborative IA process based on the exhaustive search and based on location and history information, derive expressions for IA success probability and delay, and perform the numerical analysis. The results show that the proposed scheme can significantly reduce the IA delay and effectively improve the stability of IA success probability.

  • Resource Allocation for Mobile Edge Computing System Considering User Mobility with Deep Reinforcement Learning

    Kairi TOKUDA  Takehiro SATO  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/10/06
      Vol:
    E107-B No:1
      Page(s):
    173-184

    Mobile edge computing (MEC) is a key technology for providing services that require low latency by migrating cloud functions to the network edge. The potential low quality of the wireless channel should be noted when mobile users with limited computing resources offload tasks to an MEC server. To improve the transmission reliability, it is necessary to perform resource allocation in an MEC server, taking into account the current channel quality and the resource contention. There are several works that take a deep reinforcement learning (DRL) approach to address such resource allocation. However, these approaches consider a fixed number of users offloading their tasks, and do not assume a situation where the number of users varies due to user mobility. This paper proposes Deep reinforcement learning model for MEC Resource Allocation with Dummy (DMRA-D), an online learning model that addresses the resource allocation in an MEC server under the situation where the number of users varies. By adopting dummy state/action, DMRA-D keeps the state/action representation. Therefore, DMRA-D can continue to learn one model regardless of variation in the number of users during the operation. Numerical results show that DMRA-D improves the success rate of task submission while continuing learning under the situation where the number of users varies.

  • Statistical-Mechanical Analysis of Adaptive Volterra Filter for Nonwhite Input Signals

    Koyo KUGIYAMA  Seiji MIYOSHI  

     
    PAPER

      Pubricized:
    2023/07/13
      Vol:
    E107-A No:1
      Page(s):
    87-95

    The Volterra filter is one of the digital filters that can describe nonlinearity. In this paper, we analyze the dynamic behaviors of an adaptive signal processing system with the Volterra filter for nonwhite input signals by a statistical-mechanical method. Assuming the self-averaging property with an infinitely long tapped-delay line, we derive simultaneous differential equations that describe the behaviors of macroscopic variables in a deterministic and closed form. We analytically solve the derived equations to reveal the effect of the nonwhiteness of the input signal on the adaptation process. The results for the second-order Volterra filter show that the nonwhiteness decreases the mean-square error (MSE) in the early stages of the adaptation process and increases the MSE in the later stages.

  • A New Method to Compute Sequence Correlations Over Finite Fields

    Serdar BOZTAŞ  Ferruh ÖZBUDAK  Eda TEKİN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/08/10
      Vol:
    E106-A No:12
      Page(s):
    1461-1469

    In this paper we obtain a new method to compute the correlation values of two arbitrary sequences defined by a mapping from F4n to F4. We apply this method to demonstrate that the usual nonbinary maximal length sequences have almost ideal correlation under the canonical complex correlation definition and investigate some decimations giving good cross correlation. The techniques we develop are of independent interest for future investigation of sequence design and related problems, including Boolean functions.

  • Architecture for Beyond 5G Services Enabling Cross-Industry Orchestration Open Access

    Kentaro ISHIZU  Mitsuhiro AZUMA  Hiroaki YAMAGUCHI  Akihito KATO  Iwao HOSAKO  

     
    INVITED PAPER

      Pubricized:
    2023/07/27
      Vol:
    E106-B No:12
      Page(s):
    1303-1312

    Beyond 5G is the next generation mobile communication system expected to be used from around 2030. Services in the 2030s will be composed of multiple systems provided by not only the conventional networking industry but also a wide range of industries. However, the current mobile communication system architecture is designed with a focus on networking performance and not oriented to accommodate and optimize potential systems including service management and applications, though total resource optimizations and service level performance enhancement among the systems are required. In this paper, a new concept of the Beyond 5G cross-industry service platform (B5G-XISP) is presented on which multiple systems from different industries are appropriately organized and optimized for service providers. Then, an architecture of the B5G-XISP is proposed based on requirements revealed from issues of current mobile communication systems. The proposed architecture is compared with other architectures along with use cases of an assumed future supply chain business.

  • Antennas Measurement for Millimeter Wave 5G Wireless Applications Using Radio Over Fiber Technologies Open Access

    Satoru KUROKAWA  Michitaka AMEYA  Yui OTAGAKI  Hiroshi MURATA  Masatoshi ONIZAWA  Masahiro SATO  Masanobu HIROSE  

     
    INVITED PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1313-1321

    We have developed an all-optical fiber link antenna measurement system for a millimeter wave 5th generation mobile communication frequency band around 28 GHz. Our developed system consists of an optical fiber link an electrical signal transmission system, an antenna-coupled-electrode electric-field (EO) sensor system for 28GHz-band as an electrical signal receiving system, and a 6-axis vertically articulated robot with an arm length of 1m. Our developed optical fiber link electrical signal transmission system can transmit the electrical signal of more than 40GHz with more than -30dBm output level. Our developed EO sensor can receive the electrical signal from 27GHz to 30GHz. In addition, we have estimated a far field antenna factor of the EO sensor system for the 28GHz-band using an amplitude center modified antenna factor estimation equation. The estimated far field antenna factor of the sensor system is 83.2dB/m at 28GHz.

  • Non-Contact PIM Measurement Method Using Balanced Transmission Lines for Impedance Matched PIM Measurement Systems

    Ryunosuke MUROFUSHI  Nobuhiro KUGA  Eiji HANAYAMA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E106-B No:12
      Page(s):
    1329-1336

    In this paper, a concept of non-contact PIM evaluation method using balanced transmission lines is proposed for impedance-matched PIM measurement systems. In order to evaluate the PIM characteristics of a MSL by using its image model, measurement system using balanced transmission line is introduced. In non-contact PIM measurement, to reduce undesirable PIM generation by metallic contact and the PIM-degradation in repeated measurements, a non-contact connector which is applicable without any design changes in DUT is introduce. The three-dimensional balun composed of U-balun and balanced transmission line is also proposed so that it can be applicable to conventional unbalanced PIM measurement systems. In order to validate the concept of the proposed system, a sample using nickel producing high PIM is introduced. In order to avoid the effect of the non-contact connection part on observed PIM, a sample-configuration that PIM-source exists outside of the non-contact connection part is introduced. It is also shown using a sample using copper that, nickel-sample can be clearly differentiated in PIM characteristics while it is equivalent to low-PIM sample in scattering-parameter characteristics. Finally, by introducing the TRL-calibration and by extracting inherent DUT-characteristics from whole-system characteristics, a method to estimate the PIM characteristics of DUT which cannot be taken directly in measurement is proposed.

  • Analysis and Design of Class-Φ22 Wireless Power Transfer System

    Weisen LUO  Xiuqin WEI  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1402-1410

    This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Multi-Segment Verification FrFT Frame Synchronization Detection in Underwater Acoustic Communications

    Guojin LIAO  Yongpeng ZUO  Qiao LIAO  Xiaofeng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1501-1509

    Frame synchronization detection before data transmission is an important module which directly affects the lifetime and coexistence of underwater acoustic communication (UAC) networks, where linear frequency modulation (LFM) is a frame preamble signal commonly used for synchronization. Unlike terrestrial wireless communications, strong bursty noise frequently appears in UAC. Due to the long transmission distance and the low signal-to-noise ratio, strong short-distance bursty noise will greatly reduce the accuracy of conventional fractional fourier transform (FrFT) detection. We propose a multi-segment verification fractional fourier transform (MFrFT) preamble detection algorithm to address this challenge. In the proposed algorithm, 4 times of adjacent FrFT operations are carried out. And the LFM signal identifies by observing the linear correlation between two lines connected in pair among three adjacent peak points, called ‘dual-line-correlation mechanism’. The accurate starting time of the LFM signal can be found according to the peak frequency of the adjacent FrFT. More importantly, MFrFT do not result in an increase in computational complexity. Compared with the conventional FrFT detection method, experimental results show that the proposed algorithm can effectively distinguish between signal starting points and bursty noise with much lower error detection rate, which in turn minimizes the cost of retransmission.

  • Energy-Efficient One-to-One and Many-to-One Concurrent Transmission for Wireless Sensor Networks

    SenSong HE  Ying QIU  

     
    LETTER-Information Network

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    2107-2111

    Recent studies have shown that concurrent transmission with precise time synchronization enables reliable and efficient flooding for wireless networks. However, most of them require all nodes in the network to forward packets a fixed number of times to reach the destination, which leads to unnecessary energy consumption in both one-to-one and many-to-one communication scenarios. In this letter, we propose G1M address this issue by reducing redundant packet forwarding in concurrent transmissions. The evaluation of G1M shows that compared with LWB, the average energy consumption of one-to-one and many-to-one transmission is reduced by 37.89% and 25%, respectively.

  • Decomposition of P6-Free Chordal Bipartite Graphs

    Asahi TAKAOKA  

     
    LETTER-Graphs and Networks

      Pubricized:
    2023/05/17
      Vol:
    E106-A No:11
      Page(s):
    1436-1439

    Canonical decomposition for bipartite graphs, which was introduced by Fouquet, Giakoumakis, and Vanherpe (1999), is a decomposition scheme for bipartite graphs associated with modular decomposition. Weak-bisplit graphs are bipartite graphs totally decomposable (i.e., reducible to single vertices) by canonical decomposition. Canonical decomposition comprises series, parallel, and K+S decomposition. This paper studies a decomposition scheme comprising only parallel and K+S decomposition. We show that bipartite graphs totally decomposable by this decomposition are precisely P6-free chordal bipartite graphs. This characterization indicates that P6-free chordal bipartite graphs can be recognized in linear time using the recognition algorithm for weak-bisplit graphs presented by Giakoumakis and Vanherpe (2003).

  • Evaluating Energy Consumption of Internet Services Open Access

    Leif Katsuo OXENLØWE  Quentin SAUDAN  Jasper RIEBESEHL  Mujtaba ZAHIDY  Smaranika SWAIN  

     
    INVITED PAPER

      Pubricized:
    2023/06/15
      Vol:
    E106-B No:11
      Page(s):
    1036-1043

    This paper summarizes recent reports on the internet's energy consumption and the internet's benefits on climate actions. It discusses energy-efficiency and the need for a common standard for evaluating the climate impact of future communication technologies and suggests a model that can be adapted to different internet applications such as streaming, online reading and downloading. The two main approaches today are based on how much data is transmitted or how much time the data is under way. The paper concludes that there is a need for a standardized method to estimate energy consumption and CO2 emission related to internet services. This standard should include a method for energy-optimizing future networks, where every Wh will be scrutinized.

  • Optical Fiber Connector Technology Open Access

    Ryo NAGASE  

     
    INVITED PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1044-1049

    Various optical fiber connectors have been developed during the 40 years since optical fiber communications systems were first put into practical use. This paper describes the key technologies for optical connectors and recent technical issues.

  • Real-Time Detection of Fiber Bending and/or Optical Filter Shift by Machine-Learning of Tapped Raw Digital Coherent Optical Signals

    Yuichiro NISHIKAWA  Shota NISHIJIMA  Akira HIRANO  

     
    PAPER

      Pubricized:
    2023/05/19
      Vol:
    E106-B No:11
      Page(s):
    1065-1073

    We have proposed autonomous network diagnosis platform for operation of future large capacity and virtualized network, including 5G and beyond 5G services. As for the one candidate of information collection and analyzing function blocks in the platform, we proposed novel optical sensing techniques that utilized tapped raw signal data acquired from digital coherent optical receivers. The raw signal data is captured before various digital signal processing for demodulation. Therefore, it contains various waveform deformation and/or noise as it experiences through transmission fibers. In this paper, we examined to detect two possible failures in transmission lines including fiber bending and optical filter shift by analyzing the above-mentioned raw signal data with the help of machine learning. For the purpose, we have implemented Docker container applications in WhiteBox Cassini to acquire real-time raw signal data. We generated CNN model for the detections in off-line processing and used them for real-time detections. We have confirmed successful detection of optical fiber bend and/or optical filter shift in real-time with high accuracy. Also, we evaluated their tolerance against ASE noise and invented novel approach to improve detection accuracy. In addition to that, we succeeded to detect them even in the situation of simultaneous occurrence of those failures.

  • All-Optical Modulation Format Conversions from PAM4 to QPSK and 16QAM Using Silicon-Rich Nitride Waveguides Open Access

    Yuto FUJIHARA  Asahi SUEYOSHI  Alisson RODRIGUES DE PAULA  Akihiro MARUTA  Ken MISHINA  

     
    PAPER

      Pubricized:
    2023/05/11
      Vol:
    E106-B No:11
      Page(s):
    1074-1083

    Quadrature phase-shift keying (QPSK) and 16-quadrature amplitude modulation (16QAM) formats are deployed in inter-data center networks where high transmission capacity and spectral efficiency are required. However, in intra-data center networks, a four-level pulse amplitude modulation (PAM4) format is deployed to satisfy the requirements for a simple and low-cost transceiver configuration. For the seamless and effective connection of such heterogeneous networks without an optical-electrical-optical conversion, an all-optical modulation format conversion technique is required. In this paper, we propose all-optical PAM4 to QPSK and 16QAM modulation format conversions using silicon-rich nitride waveguides. The successful conversions from 50-Gbps-class PAM4 signals to 50-Gbps-class QPSK and 100-Gbps-class 16QAM signals are demonstrated via numerical simulations.

21-40hit(2720hit)