The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OOK(149hit)

1-20hit(149hit)

  • Privacy Preserving Function Evaluation Using Lookup Tables with Word-Wise FHE Open Access

    Ruixiao LI  Hayato YAMANA  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/11/16
      Vol:
    E107-A No:8
      Page(s):
    1163-1177

    Homomorphic encryption (HE) is a promising approach for privacy-preserving applications, enabling a third party to assess functions on encrypted data. However, problems persist in implementing privacy-preserving applications through HE, including 1) long function evaluation latency and 2) limited HE primitives only allowing us to perform additions and multiplications. A homomorphic lookup-table (LUT) method has emerged to solve the above problems and enhance function evaluation efficiency. By leveraging homomorphic LUTs, intricate operations can be substituted. Previously proposed LUTs use bit-wise HE, such as TFHE, to evaluate single-input functions. However, the latency increases with the bit-length of the function’s input(s) and output. Additionally, an efficient implementation of multi-input functions remains an open question. This paper proposes a novel LUT-based privacy-preserving function evaluation method to handle multi-input functions while reducing the latency by adopting word-wise HE. Our optimization strategy adjusts table sizes to minimize the latency while preserving function output accuracy, especially for common machine-learning functions. Through our experimental evaluation utilizing the BFV scheme of the Microsoft SEAL library, we confirmed the runtime of arbitrary functions whose LUTs consist of all input-output combinations represented by given input bits: 1) single-input 12-bit functions in 0.14 s, 2) single-input 18-bit functions in 2.53 s, 3) two-input 6-bit functions in 0.17 s, and 4) three-input 4-bit functions in 0.20 s, employing four threads. Besides, we confirmed that our proposed table size optimization strategy worked well, achieving 1.2 times speed up with the same absolute error of order of magnitude of -4 (a × 10-4 where 1/$\sqrt{10}$ ≤ a < $\sqrt{10})$ for Swish and 1.9 times speed up for ReLU while decreasing the absolute error from order -2 to -4 compared to the baseline, i.e., polynomial approximation.

  • Prediction of Residual Defects after Code Review Based on Reviewer Confidence

    Shin KOMEDA  Masateru TSUNODA  Keitaro NAKASAI  Hidetake UWANO  

     
    LETTER

      Pubricized:
    2023/12/08
      Vol:
    E107-D No:3
      Page(s):
    273-276

    A major approach to enhancing software quality is reviewing the source code to identify defects. To aid in identifying flaws, an approach in which a machine learning model predicts residual defects after implementing a code review is adopted. After the model has predicted the existence of residual defects, a second-round review is performed to identify such residual flaws. To enhance the prediction accuracy of the model, information known to developers but not recorded as data is utilized. Confidence in the review is evaluated by reviewers using a 10-point scale. The assessment result is used as an independent variable of the prediction model of residual defects. Experimental results indicate that confidence improves the prediction accuracy.

  • On Lookaheads in Regular Expressions with Backreferences

    Nariyoshi CHIDA  Tachio TERAUCHI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/02/06
      Vol:
    E106-D No:5
      Page(s):
    959-975

    Many modern regular expression engines employ various extensions to give more expressive support for real-world usages. Among the major extensions employed by many of the modern regular expression engines are backreferences and lookaheads. A question of interest about these extended regular expressions is their expressive power. Previous works have shown that (i) the extension by lookaheads does not enhance the expressive power, i.e., the expressive power of regular expressions with lookaheads is still regular, and that (ii) the extension by backreferences enhances the expressive power, i.e., the expressive power of regular expressions with backreferences (abbreviated as rewb) is no longer regular. This raises the following natural question: Does the extension of regular expressions with backreferences by lookaheads enhance the expressive power of regular expressions with backreferences? This paper answers the question positively by proving that adding either positive lookaheads or negative lookaheads increases the expressive power of rewb (the former abbreviated as rewblp and the latter as rewbln). A consequence of our result is that neither the class of finite state automata nor that of memory automata (MFA) of Schmid[2] (which corresponds to regular expressions with backreferenes but without lookaheads) corresponds to rewblp or rewbln. To fill the void, as a first step toward building such automata, we propose a new class of automata called memory automata with positive lookaheads (PLMFA) that corresponds to rewblp. The key idea of PLMFA is to extend MFA with a new kind of memories, called positive-lookahead memory, that is used to simulate the backtracking behavior of positive lookaheads. Interestingly, our positive-lookahead memories are almost perfectly symmetric to the capturing-group memories of MFA. Therefore, our PLMFA can be seen as a natural extension of MFA that can be obtained independently of its original intended purpose of simulating rewblp.

  • PR-Trie: A Hybrid Trie with Ant Colony Optimization Based Prefix Partitioning for Memory-Efficient IPv4/IPv6 Route Lookup

    Yi ZHANG  Lufeng QIAO  Huali WANG  

     
    PAPER-Computer System

      Pubricized:
    2023/01/13
      Vol:
    E106-D No:4
      Page(s):
    509-522

    Memory-efficient Internet Protocol (IP) lookup with high speed is essential to achieve link-speed packet forwarding in IP routers. The rapid growth of Internet traffic and the development of optical link technologies have made IP lookup a major performance bottleneck in core routers. In this paper, we propose a new IP route lookup architecture based on hardware called Prefix-Route Trie (PR-Trie), which supports both IPv4 and IPv6 addresses. In PR-Trie, we develop a novel structure called Overlapping Hybrid Trie (OHT) to perform fast longest-prefix-matching (LPM) based on Multibit-Trie (MT), and a hash-based level matching query used to achieve only one off-chip memory access per lookup. In addition, the proposed PR-Trie also supports fast incremental updates. Since the memory complexity in MT-based IP lookup schemes depends on the level-partitioning solution and the data structure used, we develop an optimization algorithm called Bitmap-based Prefix Partitioning Optimization (BP2O). The proposed BP2O is based on a heuristic search using Ant Colony Optimization (ACO) algorithms to optimize memory efficiency. Experimental results using real-life routing tables prove that our proposal has superior memory efficiency. Theoretical performance analyses show that PR-Trie outperforms the classical Trie-based IP lookup algorithms.

  • Lookahead Search-Based Low-Complexity Multi-Type Tree Pruning Method for Versatile Video Coding (VVC) Intra Coding

    Qi TENG  Guowei TENG  Xiang LI  Ran MA  Ping AN  Zhenglong YANG  

     
    PAPER-Coding Theory

      Pubricized:
    2022/08/24
      Vol:
    E106-A No:3
      Page(s):
    606-615

    The latest versatile video coding (VVC) introduces some novel techniques such as quadtree with nested multi-type tree (QTMT), multiple transform selection (MTS) and multiple reference line (MRL). These tools improve compression efficiency compared with the previous standard H.265/HEVC, but they suffer from very high computational complexity. One of the most time-consuming parts of VVC intra coding is the coding tree unit (CTU) structure decision. In this paper, we propose a low-complexity multi-type tree (MT) pruning method for VVC intra coding. This method consists of lookahead search and MT pruning. The lookahead search process is performed to derive the approximate rate-distortion (RD) cost of each MT node at depth 2 or 3. Subsequently, the improbable MT nodes are pruned by different strategies under different cost errors. These strategies are designed according to the priority of the node. Experimental results show that the overall proposed algorithm can achieve 47.15% time saving with only 0.93% Bjøntegaard delta bit rate (BDBR) increase over natural scene sequences, and 45.39% time saving with 1.55% BDBR increase over screen content sequences, compared with the VVC reference software VTM 10.0. Such results demonstrate that our method achieves a good trade-off between computational complexity and compression quality compared to recent methods.

  • A Construction of Codebooks Asymptotically Meeting the Levenshtein Bound

    Zhangti YAN  Zhi GU  Wei GUO  Jianpeng WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2022/05/16
      Vol:
    E105-A No:11
      Page(s):
    1513-1516

    Codebooks with small maximal cross-correlation amplitudes have important applications in code division multiple access (CDMA) communication, coding theory and compressed sensing. In this letter, we design a new codebook based on a construction of Ramanujan graphs over finite abelian groups. We prove that the new codebook with length K=q+1 and size N=q2+2q+2 is asymptotically optimal with nearly achieving the Levenshtein bound when n=3, where q is a prime power. The parameters of the new codebook are new.

  • An Adaptive Multilook Approach of Multitemporal Interferometry Based on Complex Covariance Matrix for SAR Small Datasets

    Jingke ZHANG  Huina SONG  Mengyuan WANG  Zhaoyang QIU  Xuyang TENG  Qi ZHANG  

     
    LETTER-Image

      Pubricized:
    2022/05/13
      Vol:
    E105-A No:11
      Page(s):
    1517-1521

    Adaptive multilooking is a critical processing step in multi-temporal interferometric synthetic aperture radar (InSAR) measurement, especially in small temporal baseline subsets. Various amplitude-based adaptive multilook approaches have been proposed for the improvement of interferometric processing. However, the phase signal, which is fundamental in interferometric systems, is typically ignored in these methods. To fully exploit the information in complex SAR images, a nonlocal adaptive multilooking is proposed based on complex covariance matrix in this work. The complex signal is here exploited for the similiarity measurement between two pixels. Given the complexity of objects in SAR images, structure feature detection is introduced to adaptively estimate covariance matrix. The effectiveness and reliability of the proposed approach are demonstrated with experiments both on simulated and real data.

  • A Framework for Synchronous Remote Online Exams

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:7
      Page(s):
    1343-1347

    This letter presents a new framework for synchronous remote online exams. This framework proposes new monitoring of notebooks in remote locations and limited messaging only enabled between students and their instructor during online exams. This framework was evaluated by students as highly effective in minimizing cheating during online exams.

  • Codebook Design for Vertical Beamforming by Multi-Cell Coordination

    Kenji HOSHINO  Teruya FUJII  

     
    PAPER-Digital Signal Processing, Mobile Information Network and Personal Communications

      Pubricized:
    2021/10/11
      Vol:
    E105-A No:4
      Page(s):
    622-630

    Fifth-generation (5G) mobile communication systems employ beamforming technology using massive multiple-input and multiple-output (MIMO) to improve the reception quality and spectrum efficiency within a cell. Meanwhile, coordinated beamforming among multiple base stations is an effective approach to improving the spectrum efficiency at the cell edges, in which massive MIMO is deployed at geographically distant base stations and beamforming control is conducted in a cooperative manner. Codebook-based beamforming is a method for realizing multi-cell coordinated beamforming, in which each base station selects one of multiple beams that are predefined in a codebook. In codebook-based beamforming, it is important to design an efficient codebook that takes into account the beam allocation and the number of beams. In general, the larger the number of beams defined in a codebook, the more finely tuned the beam control can be and a greater improvement in spectrum efficiency can be expected. However, it requires a huge signal processing to optimize the beam combinations with a large number of beams by coordinated beamforming. This paper proposes a novel codebook design that efficiently assigns beam directions and widths in a vertical plane. Computer simulations showed that the proposed codebook performs as well as the conventional method while requiring fewer beam combinations.

  • Two New Families of Asymptotically Optimal Codebooks from Characters of Cyclic Groups

    Yang YAN  Yao YAO  Zhi CHEN  Qiuyan WANG  

     
    PAPER-Information Theory

      Pubricized:
    2021/02/08
      Vol:
    E104-A No:8
      Page(s):
    1027-1032

    Codebooks with small inner-product correlation have applied in direct spread code division multiple access communications, space-time codes and compressed sensing. In general, it is difficult to construct optimal codebooks achieving the Welch bound or the Levenstein bound. This paper focuses on constructing asymptotically optimal codebooks with characters of cyclic groups. Based on the proposed constructions, two classes of asymptotically optimal codebooks with respect to the Welch bound are presented. In addition, parameters of these codebooks are new.

  • Optimal and Asymptotically Optimal Codebooks as Regards the Levenshtein Bounds

    Hong-Li WANG  Li-Li FAN  Gang WANG  Lin-Zhi SHEN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/01/12
      Vol:
    E104-A No:7
      Page(s):
    979-983

    In the letter, two classes of optimal codebooks and asymptotically optimal codebooks in regard to the Levenshtein bound are presented, which are based on mutually unbiased bases (MUB) and approximately mutually unbiased bases (AMUB), respectively.

  • Asymptotically Optimal Codebooks in Regard to the Welch Bound with Characters

    Gang WANG  Min-Yao NIU  Lin-Zhi SHEN  You GAO  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2020/05/14
      Vol:
    E103-A No:11
      Page(s):
    1292-1295

    In this letter, motivated by the research of Tian et al., two constructions of asymptotically optimal codebooks in regard to the Welch bound with additive and multiplicative characters are provided. The parameters of constructed codebooks are new, which are different from those in the letter of Tian et al.

  • Free Space Optical Turbo Coded Communication System with Hybrid PPM-OOK Signaling

    Ran SUN  Hiromasa HABUCHI  Yusuke KOZAWA  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    287-294

    For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.

  • Block Level TLB Coalescing for Buddy Memory Allocator Open Access

    Jae Young HUR  

     
    LETTER-Computer System

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:10
      Page(s):
    2043-2046

    Conventional TLB (Translation Lookaside Buffer) coalescing schemes do not fully exploit the contiguity that a memory allocator provides. The conventional schemes accordingly have certain performance overheads due to page table walks. To address this issue, we propose an efficient scheme, called block contiguity translation (BCT), that accommodates the block size information in a page table considering the Buddy algorithm. By fully exploiting the block-level contiguity, we can reduce the page table walks as certain physical memory is allocated in the contiguous way. Additionally, we present unified per-level page sizes to simplify the design and better utilize the contiguity information. Considering the state-of-the-art schemes as references, the comparative analysis and the performance simulations are conducted. Experiments indicate that the proposed scheme can improve the memory system performance with moderate hardware overheads.

  • Development of a Novel Accurate Analysis System Regarding Information Processing within the Gazing Point Open Access

    Tsuyoshi KUSHIMA  Miyuki SUGANUMA  Shinya MOCHIDUKI  Mitsuho YAMADA  

     
    PAPER

      Vol:
    E102-A No:9
      Page(s):
    1205-1216

    Over the last 10 years, tablets have spread to the point where we can now read electronic books (e-books) like paper books. There is a long history of studies of eye movement during reading. Remarkable results have been reported for reading experiments in which displayed letters are changed in conjunction with eye movement during reading. However, these studies were conducted in the 1970s, and it is difficult to judge the detailed descriptions of the experimental techniques and whether the display time was correctly controlled when changing letters. Here, we propose an experimental system to control the display information exactly, as well as the display time, and inspect the results of past reading research, with the aim of being at the forefront of reading research in the e-book era.

  • Dynamic Performance Adjustment of CPU and GPU in a Gaming Notebook at the Battery Mode

    Chun-Hung CHENG  Ying-Wen BAI  

     
    PAPER-Computer System

      Pubricized:
    2019/03/27
      Vol:
    E102-D No:7
      Page(s):
    1257-1270

    This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.

  • A Generalized Construction of Codebook Asymptotically Meeting the Welch Bound

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:5
      Page(s):
    732-737

    In this letter, as a generalization of Luo et al.'s constructions, a construction of codebook, which meets the Welch bound asymptotically, is proposed. The parameters of codebook presented in this paper are new in some cases.

  • A Generalized Construction of Asymptotically Optimal Codebooks

    Gang WANG  Min-Yao NIU  You GAO  Fang-Wei FU  

     
    LETTER-Information Theory

      Vol:
    E102-A No:3
      Page(s):
    590-593

    In this letter, as a generalization of Heng's constructions in the paper [9], a construction of codebooks, which meets the Welch bound asymptotically, is proposed. The parameters of codebooks presented in this paper are new in some cases.

  • 83nJ/bit Transmitter Using Code-Modulated Synchronized-OOK on 65nm SOTB for Normally-Off Wireless Sensor Networks

    Van-Trung NGUYEN  Ryo ISHIKAWA  Koichiro ISHIBASHI  

     
    PAPER

      Vol:
    E101-C No:7
      Page(s):
    472-479

    This paper proposes Code-Modulated Synchronized (CMS) -OOK modulation scheme for normally-off wireless sensor networks, and demonstrates the operation of the transmitter for the CMS-OOK using 65nm SOTB (Silicon-On Thin Buried Oxide) CMOS technology. Based on investigating RF characteristics of SOTB CMOS, analog part of a CMS-OOK transmitter was designed, fabricated and evaluated in combination with based-FPGA digital part. With code modulation and controlling the carrier frequency by body bias of the SOTB devices, the spectrum of a CMS-OOK transmitter output is widen to achieve -62dBm/MHz peak power spectrum density at 15 MHz bandwidth. Chip of analog part on-board is supplied by 1V for power amplifier and 0.75V for the rest. It consumes average 83µW according to 83nJ/bit at 1kbps data transmission.

  • A SOI Multi-VDD Dual-Port SRAM Macro for Serial Access Applications

    Nobutaro SHIBATA  Mayumi WATANABE  Takako ISHIHARA  

     
    PAPER-Integrated Electronics

      Vol:
    E100-C No:11
      Page(s):
    1061-1068

    Multiport SRAMs are frequently installed in network and/or telecommunication VLSIs to implement smart functions. This paper presents a high speed and low-power dual-port (i.e., 1W+1R two-port) SRAM macro customized for serial access operations. To reduce the wasted power dissipation due to subthreshold leakage currents, the supply voltage for 10T memory cells is lowered to 1 V and a power switch is prepared for every 64 word drivers. The switch is activated with look-ahead decoder-segment activation logic, so there is no penalty when selecting a wordline. The data I/O circuitry with a new column-based configuration makes it possible to hide the bitline precharge operation with the sensing operation in the read cycle ahead of it; that is, we have successfully reduced the read latency by a half clock cycle, resulting in a pure two-stage pipeline. The SRAM macro installed in a 4K-entry × 33-bit FIFO memory, fabricated with a 0.3-µm fully-depleted-SOI CMOS process, achieved a 500-MHz operation in the typical conditions of 2- and 1-V power supplies, and 25°C. The power consumption during the standby time was less than 1.0 mW, and that at a practical operating frequency of 400 MHz was in a range of 47-57 mW, depending on the bit-stream data pattern.

1-20hit(149hit)