The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

121-140hit(6809hit)

  • Fish School Behaviour Classification for Optimal Feeding Using Dense Optical Flow

    Kazuki FUKAE  Tetsuo IMAI  Kenichi ARAI  Toru KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1472-1479

    With the growing global demand for seafood, sustainable aquaculture is attracting more attention than conventional natural fishing, which causes overfishing and damage to the marine environment. However, a major problem facing the aquaculture industry is the cost of feeding, which accounts for about 60% of a fishing expenditure. Excessive feeding increases costs, and the accumulation of residual feed on the seabed negatively impacts the quality of water environments (e.g., causing red tides). Therefore, the importance of raising fishes efficiently with less food by optimizing the timing and quantity of feeding becomes more evident. Thus, we developed a system to quantitate the amount of fish activity for the optimal feeding time and feed quantity based on the images taken. For quantitation, optical flow that is a method for tracking individual objects was used. However, it is difficult to track individual fish and quantitate their activity in the presence of many fishes. Therefore, all fish in the filmed screen were considered as a single school and the amount of change in an entire screen was used as the amount of the school activity. We divided specifically the entire image into fixed regions and quantitated by vectorizing the amount of change in each region using optical flow. A vector represents the moving distance and direction. We used the numerical data of a histogram as the indicator for the amount of fish activity by dividing them into classes and recording the number of occurrences in each class. We verified the effectiveness of the indicator by quantitating the eating and not eating movements during feeding. We evaluated the performance of the quantified indicators by the support vector classification, which is a form of machine learning. We confirmed that the two activities can be correctly classified.

  • Discriminative Question Answering via Cascade Prompt Learning and Sentence Level Attention Mechanism

    Xiaoguang YUAN  Chaofan DAI  Zongkai TIAN  Xinyu FAN  Yingyi SONG  Zengwen YU  Peng WANG  Wenjun KE  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/06/02
      Vol:
    E106-D No:9
      Page(s):
    1584-1599

    Question answering (QA) systems are designed to answer questions based on given information or with the help of external information. Recent advances in QA systems are overwhelmingly contributed by deep learning techniques, which have been employed in a wide range of fields such as finance, sports and biomedicine. For generative QA in open-domain QA, although deep learning can leverage massive data to learn meaningful feature representations and generate free text as answers, there are still problems to limit the length and content of answers. To alleviate this problem, we focus on the variant YNQA of generative QA and propose a model CasATT (cascade prompt learning framework with the sentence-level attention mechanism). In the CasATT, we excavate text semantic information from document level to sentence level and mine evidence accurately from large-scale documents by retrieval and ranking, and answer questions with ranked candidates by discriminative question answering. Our experiments on several datasets demonstrate the superior performance of the CasATT over state-of-the-art baselines, whose accuracy score can achieve 93.1% on IR&QA Competition dataset and 90.5% on BoolQ dataset.

  • A Unified Design of Generalized Moreau Enhancement Matrix for Sparsity Aware LiGME Models

    Yang CHEN  Masao YAMAGISHI  Isao YAMADA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2023/02/14
      Vol:
    E106-A No:8
      Page(s):
    1025-1036

    In this paper, we propose a unified algebraic design of the generalized Moreau enhancement matrix (GME matrix) for the Linearly involved Generalized-Moreau-Enhanced (LiGME) model. The LiGME model has been established as a framework to construct linearly involved nonconvex regularizers for sparsity (or low-rank) aware estimation, where the design of GME matrix is a key to guarantee the overall convexity of the model. The proposed design is applicable to general linear operators involved in the regularizer of the LiGME model, and does not require any eigendecomposition or iterative computation. We also present an application of the LiGME model with the proposed GME matrix to a group sparsity aware least squares estimation problem. Numerical experiments demonstrate the effectiveness of the proposed GME matrix in the LiGME model.

  • New Bounds on the Partial Hamming Correlation of Wide-Gap Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Zengqing LI  Hongyu HAN  Hanzhou WU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Pubricized:
    2023/01/23
      Vol:
    E106-A No:8
      Page(s):
    1077-1080

    In frequency hopping communication, time delay and Doppler shift incur interference. With the escalating upgrading of complicated interference, in this paper, the time-frequency two-dimensional (TFTD) partial Hamming correlation (PHC) properties of wide-gap frequency-hopping sequences (WGFHSs) with frequency shift are discussed. A bound on the maximum TFTD partial Hamming auto-correlation (PHAC) and two bounds on the maximum TFTD PHC of WGFHSs are got. Li-Fan-Yang bounds are the particular cases of new bounds for frequency shift is zero.

  • HARQ Using Hierarchical Tree-Structured Random Access Identifiers in NOMA-Based Random Access Open Access

    Megumi ASADA  Nobuhide NONAKA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/02/21
      Vol:
    E106-B No:8
      Page(s):
    696-704

    We propose an efficient hybrid automatic repeat request (HARQ) method that simultaneously achieves packet combining and resolution of the collisions of random access identifiers (RAIDs) during retransmission in a non-orthogonal multiple access (NOMA)-based random access system. Here, the RAID functions as a separator for simultaneously received packets that use the same channel in NOMA. An example of this is a scrambling code used in 4G and 5G systems. Since users independently select a RAID from the candidate set prepared by the system, the decoding of received packets fails when multiple users select the same RAID. Random RAID reselection by each user when attempting retransmission can resolve a RAID collision; however, packet combining between the previous and retransmitted packets is not possible in this case because the base station receiver does not know the relationship between the RAID of the previously transmitted packet and that of the retransmitted packet. To address this problem, we propose a HARQ method that employs novel hierarchical tree-structured RAID groups in which the RAID for the previous packet transmission has a one-to-one relationship with the set of RAIDs for retransmission. The proposed method resolves RAID collisions at retransmission by randomly reselecting for each user a RAID from the dedicated RAID set from the previous transmission. Since the relationship between the RAIDs at the previous transmission and retransmission is known at the base station, packet combining is achieved simultaneously. Computer simulation results show the effectiveness of the proposed method.

  • Information Recovery for Signals Intercepted by Dual-Channel Nyquist Folding Receiver with Adjustable Local Oscillator

    Xinqun LIU  Tao LI  Yingxiao ZHAO  Jinlin PENG  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2023/03/24
      Vol:
    E106-C No:8
      Page(s):
    446-449

    Conventional Nyquist folding receiver (NYFR) uses zero crossing rising (ZCR) voltage times to control the RF sample clock, which is easily affected by noise. Moreover, the analog and digital parts are not synchronized so that the initial phase of the input signal is lost. Furthermore, it is assumed in most literature that the input signal is in a single Nyquist zone (NZ), which is inconsistent with the actual situation. In this paper, we propose an improved architecture denominated as a dual-channel NYFR with adjustable local oscillator (LOS) and an information recovery algorithm. The simulation results demonstrate the validity and viability of the proposed architecture and the corresponding algorithm.

  • Quality Enhancement of Conventional Compression with a Learned Side Bitstream

    Takahiro NARUKO  Hiroaki AKUTSU  Koki TSUBOTA  Kiyoharu AIZAWA  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/25
      Vol:
    E106-D No:8
      Page(s):
    1296-1299

    We propose Quality Enhancement via a Side bitstream Network (QESN) technique for lossy image compression. The proposed QESN utilizes the network architecture of deep image compression to produce a bitstream for enhancing the quality of conventional compression. We also present a loss function that directly optimizes the Bjontegaard delta bit rate (BD-BR) by using a differentiable model of a rate-distortion curve. Experimental results show that QESN improves the rate by 16.7% in the BD-BR compared to Better Portable Graphics.

  • Performance of Modified Fractional Frequency Reuse in Nakagami-m Fading Channel

    Sinh Cong LAM  Bach Hung LUU  Nam Hoang NGUYEN  Trong Minh HOANG  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/18
      Vol:
    E106-A No:7
      Page(s):
    1016-1019

    Fractional Frequency Reuse (FFR), which was introduced by 3GPP is considered the powerful technique to improve user performance. However, implementation of FFR is a challenge due to strong dependence between base stations (BSs) in terms of resource allocations. This paper studies a modified and flexible FFR scheme that allows all BSs works independently. The analytical and simulation results prove that the modified FFR scheme outperforms the conventional FFR.

  • Sum Rate Maximization for Cooperative NOMA System with IQ Imbalance

    Xiaoyu WAN  Yu WANG  Zhengqiang WANG  Zifu FAN  Bin DUO  

     
    PAPER-Network

      Pubricized:
    2023/01/17
      Vol:
    E106-B No:7
      Page(s):
    571-577

    In this paper, we investigate the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) system under in-phase and quadrature-phase (IQ) imbalance at the base station (BS) and destination. The BS communicates with users by a half-duplex amplified-and-forward (HD-AF) relay under imperfect IQ imbalance. The sum rate maximization problem is formulated as a non-convex optimization with the quality of service (QoS) constraint for each user. We first use the variable substitution method to transform the non-convex SR maximization problem into an equivalent problem. Then, a joint power and rate allocation algorithm is proposed based on successive convex approximation (SCA) to maximize the SR of the systems. Simulation results verify that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

  • Single Image Dehazing Based on Sky Area Segmentation and Image Fusion

    Xiangyang CHEN  Haiyue LI  Chuan LI  Weiwei JIANG  Hao ZHOU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/24
      Vol:
    E106-D No:7
      Page(s):
    1249-1253

    Since the dark channel prior (DCP)-based dehazing method is ineffective in the sky area and will cause the problem of too dark and color distortion of the image, we propose a novel dehazing method based on sky area segmentation and image fusion. We first segment the image according to the characteristics of the sky area and non-sky area of the image, then estimate the atmospheric light and transmission map according to the DCP and correct them, and then fuse the original image after the contrast adaptive histogram equalization to improve the details information of the image. Experiments illustrate that our method performs well in dehazing and can reduce image distortion.

  • Constructions of Low/Zero Correlation Zone Sequence Sets and Their Application in Grant-Free Non-Orthogonal Multiple Access System

    Tao LIU  Meiyue WANG  Dongyan JIA  Yubo LI  

     
    PAPER-Information Theory

      Pubricized:
    2022/12/16
      Vol:
    E106-A No:6
      Page(s):
    907-915

    In the massive machine-type communication scenario, aiming at the problems of active user detection and channel estimation in the grant-free non-orthogonal multiple access (NOMA) system, new sets of non-orthogonal spreading sequences are proposed by using the zero/low correlation zone sequence set with low correlation among multiple sets. The simulation results show that the resulting sequence set has low coherence, which presents reliable performance for channel estimation and active user detection based on compressed sensing. Compared with the traditional Zadoff-Chu (ZC) sequences, the new non-orthogonal spreading sequences have more flexible lengths, and lower peak-to-average power ratio (PAPR) and smaller alphabet size. Consequently, these sequences will effectively solve the problem of high PAPR of time domain signals and are more suitable for low-cost devices in massive machine-type communication.

  • Examination of Quantitative Evaluation Index of Contrast Improvement for Dichromats

    Xi CHENG  Go TANAKA  

     
    PAPER-Image

      Pubricized:
    2022/12/02
      Vol:
    E106-A No:6
      Page(s):
    916-923

    For dichromats to receive the information represented in color images, it is important to study contrast improvement methods and quantitative evaluation indices of color conversion results. There is an index to evaluate the degree of contrast improvement and in this index, the contrast for dichromacy caused by the lightness component is given importance. In addition, random sampling was introduced in the computation of this index. Although the validity of the index has been shown through comparison with a subjective evaluation, it is considered that the following two points should be examined. First, should contrast for normal trichromacy caused by the lightness component also be attached importance. Second, the influence of random sampling should be examined in detail. In this paper, a new index is proposed and the above-mentioned points are examined. For the first point, the following is revealed through experiment. Consideration of the contrast for normal trichromacy caused by a lightness component that is the same as that for dichromacy may or may not result in a good outcome. The evaluation performance of the proposed index is equivalent to that of the previous index overall. It can be said that the proposed index is superior to the previous one in terms of the unity of evaluating contrast. For the second point, the computation time and the evaluation of significant digits are shown. In this paper, a sampling number such that the number of significant digits can be considered as three is used. In this case, the variation caused by random sampling is negligible compared with the range of the proposed index, whereas the computation time is about one-seventh that when the sampling is not adopted.

  • L0-Norm Based Adaptive Equalization with PMSER Criterion for Underwater Acoustic Communications

    Tian FANG  Feng LIU  Conggai LI  Fangjiong CHEN  Yanli XU  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2022/12/06
      Vol:
    E106-A No:6
      Page(s):
    947-951

    Underwater acoustic channels (UWA) are usually sparse, which can be exploited for adaptive equalization to improve the system performance. For the shallow UWA channels, based on the proportional minimum symbol error rate (PMSER) criterion, the adaptive equalization framework requires the sparsity selection. Since the sparsity of the L0 norm is stronger than that of the L1, we choose it to achieve better convergence. However, because the L0 norm leads to NP-hard problems, it is difficult to find an efficient solution. In order to solve this problem, we choose the Gaussian function to approximate the L0 norm. Simulation results show that the proposed scheme obtains better performance than the L1 based counterpart.

  • High Performance Network Virtualization Architecture on FPGA SmartNIC

    Ke WANG  Yiwei CHANG  Zhichuan GUO  

     
    PAPER-Network System

      Pubricized:
    2022/11/29
      Vol:
    E106-B No:6
      Page(s):
    500-508

    Network Functional Virtualization (NFV) is a high-performance network interconnection technology that allows access to traditional network transport devices through virtual network links. It is widely used in cloud computing and other high-concurrent access environments. However, there is a long delay in the introduction of software NFV solutions. Other hardware I/O virtualization solutions don't scale very well. Therefore, this paper proposes a virtualization implementation method on 100Gbps high-speed Field Programmable Gate Array (FPGA) network accelerator card, which uses FPGA accelerator to improve the performance of virtual network devices. This method uses the single root I/O virtualization (SR-IOV) technology to allow 256 virtual links to be created for a single Peripheral Component Interconnect express (PCIe) device. And it supports data transfer with virtual machine (VM) in the way of Peripheral Component Interconnect (PCI) passthrough. In addition, the design also adopts the shared extensible queue management mechanism, which supports the flexible allocation of more than 10,000 queues on virtual machines, and ensures the good isolation performance in the data path and control path. The design provides high-bandwidth transmission performance of more than 90Gbps for the entire network system, meeting the performance requirements of hyperscale cloud computing clusters.

  • Unified 6G Waveform Design Based on DFT-s-OFDM Enhancements

    Juan LIU  Xiaolin HOU  Wenjia LIU  Lan CHEN  Yoshihisa KISHIYAMA  Takahiro ASAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/12/05
      Vol:
    E106-B No:6
      Page(s):
    528-537

    To achieve the extreme high data rate and extreme coverage extension requirements of 6G wireless communication, new spectrum in sub-THz (100-300GHz) and non-terrestrial network (NTN) are two of the macro trends of 6G candidate technologies, respectively. However, non-linearity of power amplifiers (PA) is a critical challenge for both sub-THz and NTN. Therefore, high power efficiency (PE) or low peak to average power ratio (PAPR) waveform design becomes one of the most significant 6G research topics. Meanwhile, high spectral efficiency (SE) and low out-of-band emission (OOBE) are still important key performance indicators (KPIs) for 6G waveform design. Single-carrier waveform discrete Fourier transform spreading orthogonal frequency division multiplexing (DFT-s-OFDM) has achieved many research interests due to its high PE, and it has been supported in 5G New Radio (NR) when uplink coverage is limited. So DFT-s-OFDM can be regarded as a candidate waveform for 6G. Many enhancement schemes based on DFT-s-OFDM have been proposed, including null cyclic prefix (NCP)/unique word (UW), frequency-domain spectral shaping (FDSS), and time-domain compression and expansion (TD-CE), etc. However, there is no unified framework to be compatible with all the enhancement schemes. This paper firstly provides a general description of the 6G candidate waveforms based on DFT-s-OFDM enhancement. Secondly, the more flexible TD-CE supporting methods for unified non-orthogonal waveform (uNOW) are proposed and discussed. Thirdly, a unified waveform framework based on DFT-s-OFDM structure is proposed. By designing the pre-processing and post-processing modules before and after DFT in the unified waveform framework, the three technical methods (NCP/UW, FDSS, and TD-CE) can be integrated to improve three KPIs of DFT-s-OFDM simultaneously with high flexibility. Then the implementation complexity of the 6G candidate waveforms are analyzed and compared. Performance of different DFT-s-OFDM enhancement schemes is investigated by link level simulation, which reveals that uNOW can achieve the best PAPR performance among all the 6G candidate waveforms. When considering PA back-off, uNOW can achieve 124% throughput gain compared to traditional DFT-s-OFDM.

  • Lead Bromide-Based Layered Perovskite Quantum-Well Films Having Aromatic Chromophores in Organic Layer

    Masanao ERA  

     
    BRIEF PAPER

      Pubricized:
    2022/12/16
      Vol:
    E106-C No:6
      Page(s):
    244-247

    Lead bromide-based perovskite organic-inorganic quantum-well films incorporated polycyclic aromatic chromophores into the organic layer (in other words, hybrid quantum-wells combined lead bromide semiconductor and organic semiconductors) were prepared by use of the spin-coating technique from the DMF solution in which PbBr2 and alkyl ammonium bromides which were linked polycyclic aromatics, pyrene, phenanthrene, and anthracene. When the pyrene-linked methyl ammonium bromide, which has a relatively small molecular cross-section with regard to the inorganic semiconductor plane, was employed, a lead bromide-based perovskite structure was successfully formed in the spin-coated films. When the phenanthrene-linked and anthracene-linked ammonium bromides, whose chromophore have large molecular cross-sections, were employed, lead bromide-based perovskite structures were not formed. However, the introduction of longer alkyl chains into the aromatics-linked ammonium bromides made it possible to form the perovskite structure.

  • Terahertz Radiations and Switching Phenomena of Intrinsic Josephson Junctions in High-Temperature Superconductors: Josephson Phase Dynamics in Long- and Short-Ranged Interactions Open Access

    Itsuhiro KAKEYA  

     
    INVITED PAPER

      Pubricized:
    2022/12/07
      Vol:
    E106-C No:6
      Page(s):
    272-280

    Studies on intrinsic Josephson junctions (IJJs) of cuprate superconductors are reviewed. A system consisting of a few IJJs provides phenomena to test the Josephson phase dynamics and its interaction between adjacent IJJs within a nanometer scale, which is unique to cuprate superconductors. Quasiparticle density of states, which provides direct information on the Cooper-pair formation, is also revealed in the system. In contrast, Josephson plasma emission, which is an electromagnetic wave radiation in the sub-terahertz frequency range from an IJJ stack, arises from the synchronous phase dynamics of hundreds of IJJs coupled globally. This review summarizes a wide range of physical phenomena in IJJ systems having capacitive and inductive couplings with different nanometer and micrometer length scales, respectively.

  • Flux Modulation Enhancement of dc-SQUID Based on Intrinsic Josephson Junctions Made of Bi2Sr2CaCuO8+δ Thin Films Open Access

    Kensuke NAKAJIMA  Hironobu YAMADA  Mihoko TAKEDA  

     
    INVITED PAPER

      Pubricized:
    2022/11/29
      Vol:
    E106-C No:6
      Page(s):
    289-292

    Direct-current superconducting quantum interference device (dc-SQUID) based on intrinsic Josephson junction (IJJ) has been fabricated using Bi2Sr2CaCu2O8+δ (Bi-2212) films grown on MgO substrates with surface steps. The superconducting loop parallel to the film surface across the step edge contains two IJJ stacks along the edge. The number of crystallographically stacked IJJ for each SQUIDs were 40, 18 and 3. Those IJJ SQUIDs except for one with 40 stacked IJJs revealed clear periodic modulation of the critical current for the flux quanta through the loops. It is anticipated that phase locking of IJJ has an effect on the modulation depth of the IJJ dc-SQUID.

  • Possibilities and Challenges of Superconducting Qubits in the Intrinsic Josephson Junctions Open Access

    Haruhisa KITANO  

     
    INVITED PAPER

      Pubricized:
    2022/12/12
      Vol:
    E106-C No:6
      Page(s):
    293-300

    Intrinsic Josephson junctions (IJJs) in the high-Tc cuprate superconductors have several fascinating properties, which are superior to the usual Josephson junctions obtained from conventional superconductors with low Tc, as follows; (1) a very thin thickness of the superconducting layers, (2) a strong interaction between junctions since neighboring junctions are closely connected in an atomic scale, (3) a clean interface between the superconducting and insulating layers, realized in a single crystal with few disorders. These unique properties of IJJs can enlarge the applicable areas of the superconducting qubits, not only the increase of qubit-operation temperature but the novel application of qubits including the macroscopic quantum states with internal degree of freedom. I present a comprehensive review of the phase dynamics in current-biased IJJs and argue the challenges of superconducting qubits utilizing IJJs.

  • Design of Full State Observer Based on Data-Driven Dual System Representation

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    736-743

    This paper addresses an observer-design method only using data. Usually, the observer requires a mathematical model of a system for state prediction and observer gain calculation. As an alternative to the model-based prediction, the proposed predictor calculates the states using a linear combination of the given data. To design the observer gain, the data which represent dual systems are derived from the data which represent the original system. Linear matrix inequalities that depend on data of the dual system provides the observer gains.

121-140hit(6809hit)