The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

281-300hit(6809hit)

  • Kernel-Based Hamilton-Jacobi Equations for Data-Driven Optimal Control: The General Case Open Access

    Yuji ITO  Kenji FUJIMOTO  

     
    INVITED PAPER-Systems and Control

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    1-10

    Recently, control theory using machine learning, which is useful for the control of unknown systems, has attracted significant attention. This study focuses on such a topic with optimal control problems for unknown nonlinear systems. Because optimal controllers are designed based on mathematical models of the systems, it is challenging to obtain models with insufficient knowledge of the systems. Kernel functions are promising for developing data-driven models with limited knowledge. However, the complex forms of such kernel-based models make it difficult to design the optimal controllers. The design corresponds to solving Hamilton-Jacobi (HJ) equations because their solutions provide optimal controllers. Therefore, the aim of this study is to derive certain kernel-based models for which the HJ equations are solved in an exact sense, which is an extended version of the authors' former work. The HJ equations are decomposed into tractable algebraic matrix equations and nonlinear functions. Solving the matrix equations enables us to obtain the optimal controllers of the model. A numerical simulation demonstrates that kernel-based models and controllers are successfully developed.

  • A Construction of Inter-Group Complementary Sequence Set Based on Interleaving Technique

    Xiaoyu CHEN  Huanchang LI  Yihan ZHANG  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/07/12
      Vol:
    E105-A No:1
      Page(s):
    68-71

    A new construction of shift sequences is proposed under the condition of P|L, and then the inter-group complementary (IGC) sequence sets are constructed based on the shift sequence. By adjusting the parameter q, two or three IGC sequence sets can be obtained. Compared with previous methods, the proposed construction can provide more sequence sets for both synchronous and asynchronous code-division multiple access communication systems.

  • Replicated Study of Effectiveness Evaluation of Cutting-Edge Software Engineering

    Yukasa MURAKAMI  Masateru TSUNODA  

     
    LETTER

      Pubricized:
    2021/12/02
      Vol:
    E105-D No:1
      Page(s):
    21-25

    Although many software engineering studies have been conducted, it is not clear whether they meet the needs of software development practitioners. Some studies evaluated the effectiveness of software engineering research by practitioners, to clarify the research satisfies the needs of the practitioners. We performed replicated study of them, recruiting practitioners who mainly belong to SMEs (small and medium-sized enterprises) to the survey. We asked 16 practitioners to evaluate cutting-edge software engineering studies presented in ICSE 2016. In the survey, we set the viewpoint of the evaluation as the effectiveness for the respondent's own work. As a result, the ratio of positive answers (i.e., the answers were greater than 2 on a 5-point scale) was 33.3%, and the ratio was lower than past studies. The result was not affected by the number of employees in the respondent's company, but would be affected by the viewpoint of the evaluation.

  • Firewall Traversal Method by Pseudo-TCP Encapsulation

    Keigo TAGA  Junjun ZHENG  Koichi MOURI  Shoichi SAITO  Eiji TAKIMOTO  

     
    PAPER-Information Network

      Pubricized:
    2021/09/29
      Vol:
    E105-D No:1
      Page(s):
    105-115

    A wide range of communication protocols has recently been developed to address service diversification. At the same time, firewalls (FWs) are installed at the boundaries between internal networks, such as those owned by companies and homes, and the Internet. In general, FWs are configured as whitelists and release only the port corresponding to the service to be used and block communication from other ports. In a previous study, we proposed a method for traversing a FW and enabling communication by inserting a pseudo-transmission control protocol (TCP) header imitating HTTPS into a packet, which normally would be blocked by the FW. In that study, we confirmed the efficiency of the proposed method via its implementation and experiments. Even though common encapsulating techniques work on end-nodes, the previous implementation worked on the relay node assuming a router. Further, middleboxes, which overwrite L3 and L4 headers on the Internet, need to be taken into consideration. Accordingly, we re-implemented the proposed method into an end-node and added a feature countering a typical middlebox, i.e., NAPT, into our implementation. In this paper, we describe the functional confirmation and performance evaluations of both versions of the proposed method.

  • A Survey of Quantum Error Correction Open Access

    Ryutaroh MATSUMOTO  Manabu HAGIWARA  

     
    INVITED SURVEY PAPER-Coding Theory

      Pubricized:
    2021/06/18
      Vol:
    E104-A No:12
      Page(s):
    1654-1664

    This paper surveys development of quantum error correction. With the familiarity with conventional coding theory and tensor product in multi-linear algebra, this paper can be read in a self-contained manner.

  • Trace Representation of r-Ary Sequences Derived from Euler Quotients Modulo 2p

    Rayan MOHAMMED  Xiaoni DU  Wengang JIN  Yanzhong SUN  

     
    PAPER-Coding Theory

      Pubricized:
    2021/06/21
      Vol:
    E104-A No:12
      Page(s):
    1698-1703

    We introduce the r-ary sequence with period 2p2 derived from Euler quotients modulo 2p (p is an odd prime) where r is an odd prime divisor of (p-1). Then based on the cyclotomic theory and the theory of trace function in finite fields, we give the trace representation of the proposed sequence by determining the corresponding defining polynomial. Our results will be help for the implementation and the pseudo-random properties analysis of the sequences.

  • New Binary Quantum Codes Derived from Quasi-Twisted Codes with Hermitian Inner Product

    Yu YAO  Yuena MA  Jingjie LV  Hao SONG  Qiang FU  

     
    LETTER-Coding Theory

      Pubricized:
    2021/05/28
      Vol:
    E104-A No:12
      Page(s):
    1718-1722

    In this paper, a special class of two-generator quasi-twisted (QT) codes with index 2 will be presented. We explore the algebraic structure of the class of QT codes and the form of their Hermitian dual codes. A sufficient condition for self-orthogonality with Hermitian inner product is derived. Using the class of Hermitian self-orthogonal QT codes, we construct two new binary quantum codes [[70, 42, 7]]2, [[78, 30, 10]]2. According to Theorem 6 of Ref.[2], we further can get 9 new binary quantum codes. So a total of 11 new binary quantum codes are obtained and there are 10 quantum codes that can break the quantum Gilbert-Varshamov (GV) bound.

  • Performance Modeling of Bitcoin Blockchain: Mining Mechanism and Transaction-Confirmation Process Open Access

    Shoji KASAHARA  

     
    INVITED PAPER

      Pubricized:
    2021/06/09
      Vol:
    E104-B No:12
      Page(s):
    1455-1464

    Bitcoin is one of popular cryptocurrencies widely used over the world, and its blockchain technology has attracted considerable attention. In Bitcoin system, it has been reported that transactions are prioritized according to transaction fees, and that transactions with high priorities are likely to be confirmed faster than those with low priorities. In this paper, we consider performance modeling of Bitcoin-blockchain system in order to characterize the transaction-confirmation time. We first introduce the Bitcoin system, focusing on proof-of-work, the consensus mechanism of Bitcoin blockchain. Then, we show some queueing models and its analytical results, discussing the implications and insights obtained from the queueing models.

  • Analysis on Asymptotic Optimality of Round-Robin Scheduling for Minimizing Age of Information with HARQ Open Access

    Zhiyuan JIANG  Yijie HUANG  Shunqing ZHANG  Shugong XU  

     
    INVITED PAPER

      Pubricized:
    2021/07/01
      Vol:
    E104-B No:12
      Page(s):
    1465-1478

    In a heterogeneous unreliable multiaccess network, wherein terminals share a common wireless channel with distinct error probabilities, existing works have shown that a persistent round-robin (RR-P) scheduling policy can be arbitrarily worse than the optimum in terms of Age of Information (AoI) under standard Automatic Repeat reQuest (ARQ). In this paper, practical Hybrid ARQ (HARQ) schemes which are widely-used in today's wireless networks are considered. We show that RR-P is very close to optimum with asymptotically many terminals in this case, by explicitly deriving tight, closed-form AoI gaps between optimum and achievable AoI by RR-P. In particular, it is rigorously proved that for RR-P, under HARQ models concerning fading channels (resp. finite-blocklength regime), the relative AoI gap compared with the optimum is within a constant of 6.4% (resp. 6.2% with error exponential decay rate of 0.5). In addition, RR-P enjoys the distinctive advantage of implementation simplicity with channel-unaware and easy-to-decentralize operations, making it favorable in practice. A further investigation considering constraint imposed on the number of retransmissions is presented. The performance gap is indicated through numerical simulations.

  • Weighted PCA-LDA Based Color Quantization Method Suppressing Saturation Decrease

    Seiichi KOJIMA  Momoka HARADA  Yoshiaki UEDA  Noriaki SUETAKE  

     
    LETTER-Image

      Pubricized:
    2021/06/02
      Vol:
    E104-A No:12
      Page(s):
    1728-1732

    In this letter, we propose a new color quantization method suppressing saturation decrease. In the proposed method, saturation-based weight and intensity-based weight are used so that vivid colors are selected as the representative colors preferentially. Experiments show that the proposed method tends to select vivid colors even if they occupy only a small area in the image.

  • Signature Codes to Remove Interference Light in Synchronous Optical Code-Division Multiple Access Systems Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Kyohei ONO  

     
    PAPER-Coding Theory

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1619-1628

    This paper proposes a new class of signature codes for synchronous optical code-division multiple access (CDMA) and describes a general method for construction of the codes. The proposed codes can be obtained from generalized modified prime sequence codes (GMPSCs) based on extension fields GF(q), where q=pm, p is a prime number, and m is a positive integer. It has been reported that optical CDMA systems using GMPSCs remove not only multi-user interference but also optical interference (e.g., background light) with a constant intensity during a slot of length q2. Recently, the authors have reported that optical CDMA systems using GMPSCs also remove optical interference with intensity varying by blocks with a length of q. The proposed codes, referred to as p-chip codes in general and chip-pair codes in particular for the case of p=2, have the property of removing interference light with an intensity varying by shorter blocks with a length of p without requiring additional equipment. The present paper also investigates the algebraic properties and applications of the proposed codes.

  • Dynamic Incentive Mechanism for Industrial Network Congestion Control

    Zhentian WU  Feng YAN  Zhihua YANG  Jingya YANG  

     
    LETTER-Information Network

      Pubricized:
    2021/07/29
      Vol:
    E104-D No:11
      Page(s):
    2015-2018

    This paper studies using price incentives to shift bandwidth demand from peak to non-peak periods. In particular, cost discounts decrease as peak monthly usage increases. We take into account the delay sensitivity of different apps: during peak hours, the usage of hard real-time applications (HRAS) is not counted in the user's monthly data cap, while the usage of other applications (OAS) is counted in the user's monthly data cap. As a result, users may voluntarily delay or abandon OAS in order to get a higher fee discount. Then, a new data rate control algorithm is proposed. The algorithm allocates the data rate according to the priority of the source, which is determined by two factors: (I) the allocated data rate; and (II) the waiting time.

  • Joint Wireless and Computational Resource Allocation Based on Hierarchical Game for Mobile Edge Computing

    Weiwei XIA  Zhuorui LAN  Lianfeng SHEN  

     
    PAPER-Network

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1395-1407

    In this paper, we propose a hierarchical Stackelberg game based resource allocation algorithm (HGRAA) to jointly allocate the wireless and computational resources of a mobile edge computing (MEC) system. The proposed HGRAA is composed of two levels: the lower-level evolutionary game (LEG) minimizes the cost of mobile terminals (MTs), and the upper-level exact potential game (UEPG) maximizes the utility of MEC servers. At the lower-level, the MTs are divided into delay-sensitive MTs (DSMTs) and non-delay-sensitive MTs (NDSMTs) according to their different quality of service (QoS) requirements. The competition among DSMTs and NDSMTs in different service areas to share the limited available wireless and computational resources is formulated as a dynamic evolutionary game. The dynamic replicator is applied to obtain the evolutionary equilibrium so as to minimize the costs imposed on MTs. At the upper level, the exact potential game is formulated to solve the resource sharing problem among MEC servers and the resource sharing problem is transferred to nonlinear complementarity. The existence of Nash equilibrium (NE) is proved and is obtained through the Karush-Kuhn-Tucker (KKT) condition. Simulations illustrate that substantial performance improvements such as average utility and the resource utilization of MEC servers can be achieved by applying the proposed HGRAA. Moreover, the cost of MTs is significantly lower than other existing algorithms with the increasing size of input data, and the QoS requirements of different kinds of MTs are well guaranteed in terms of average delay and transmission data rate.

  • A Reconfigurable 74-140Mbps LDPC Decoding System for CCSDS Standard

    Yun CHEN  Jimin WANG  Shixian LI  Jinfou XIE  Qichen ZHANG  Keshab K. PARHI  Xiaoyang ZENG  

     
    PAPER

      Pubricized:
    2021/05/25
      Vol:
    E104-A No:11
      Page(s):
    1509-1515

    Accumulate Repeat-4 Jagged-Accumulate (AR4JA) codes, which are channel codes designed for deep-space communications, are a series of QC-LDPC codes. Structures of these codes' generator matrix can be exploited to design reconfigurable encoders. To make the decoder reconfigurable and achieve shorter convergence time, turbo-like decoding message passing (TDMP) is chosen as the hardware decoder's decoding schedule and normalized min-sum algorithm (NMSA) is used as decoding algorithm to reduce hardware complexity. In this paper, we propose a reconfigurable decoder and present its FPGA implementation results. The decoder can achieve throughput greater than 74 Mbps.

  • Supply and Threshold Voltage Scaling for Minimum Energy Operation over a Wide Operating Performance Region

    Shoya SONODA  Jun SHIOMI  Hidetoshi ONODERA  

     
    PAPER

      Pubricized:
    2021/05/14
      Vol:
    E104-A No:11
      Page(s):
    1566-1576

    A method for runtime energy optimization based on the supply voltage (Vdd) and the threshold voltage (Vth) scaling is proposed. This paper refers to the optimal voltage pair, which minimizes the energy consumption of LSI circuits under a target delay constraint, as a Minimum Energy Point (MEP). The MEP dynamically fluctuates depending on the operating conditions determined by a target delay constraint, an activity factor and a chip temperature. In order to track the MEP, this paper proposes a closed-form continuous function that determines the MEP over a wide operating performance region ranging from the above-threshold region down to the sub-threshold region. Based on the MEP determination formula, an MEP tracking algorithm is also proposed. The MEP tracking algorithm estimates the MEP even though the operating conditions widely change. Measurement results based on a 32-bit RISC processor fabricated in a 65-nm Silicon On Thin Buried oxide (SOTB) process technology show that the proposed method estimates the MEP within a 5% energy loss in comparison with the actual MEP operation.

  • Adaptive Normal State-Space Notch Digital Filters: Algorithm and Frequency-Estimation Bias Analysis

    Yoichi HINAMOTO  Shotaro NISHIMURA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/05/17
      Vol:
    E104-A No:11
      Page(s):
    1585-1592

    This paper investigates an adaptive notch digital filter that employs normal state-space realization of a single-frequency second-order IIR notch digital filter. An adaptive algorithm is developed to minimize the mean-squared output error of the filter iteratively. This algorithm is based on a simplified form of the gradient-decent method. Stability and frequency estimation bias are analyzed for the adaptive iterative algorithm. Finally, a numerical example is presented to demonstrate the validity and effectiveness of the proposed adaptive notch digital filter and the frequency-estimation bias analyzed for the adaptive iterative algorithm.

  • A Spectrum Regeneration and Demodulation Method for Multiple Direct Undersampled Real Signals Open Access

    Takashi SHIBA  Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER

      Pubricized:
    2021/03/30
      Vol:
    E104-B No:10
      Page(s):
    1260-1267

    We propose a spectrum regeneration and demodulation method for multiple direct RF undersampled real signals by using a new algorithm. Many methods have been proposed to regenerate the RF spectrum by using undersampling because of its simple circuit architecture. However, it is difficult to regenerate the spectrum from a real signal that has a band wider than a half of the sampling frequency, because it is difficult to include complex conjugate relation of the folded spectrum into the linear algebraic equation in this case. We propose a new spectrum regeneration method from direct undersampled real signals that uses multiple clocks and an extended algorithm considering the complex conjugate relation. Simulations are used to verify the potential of this method. The validity of the proposed method is verified by using the simulation data and the measured data. We also apply this algorithm to the demodulation system.

  • Constructions of Binary Sequence Pairs of Length 5q with Optimal Three-Level Correlation

    Xiumin SHEN  Xiaofei SONG  Yanguo JIA  Yubo LI  

     
    LETTER-Coding Theory

      Pubricized:
    2021/04/14
      Vol:
    E104-A No:10
      Page(s):
    1435-1439

    Binary sequence pairs with optimal periodic correlation have important applications in many fields of communication systems. In this letter, four new families of binary sequence pairs are presented based on the generalized cyclotomy over Z5q, where q ≠ 5 is an odd prime. All these binary sequence pairs have optimal three-level correlation values {-1, 3}.

  • Quantum-Noise-Limited BPSK Transmission Using Gain-Saturated Phase-Sensitive Amplifiers

    Kyo INOUE  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2021/04/14
      Vol:
    E104-B No:10
      Page(s):
    1268-1276

    Quantum noise ultimately restricts the transmission distance in fiber communication systems using optical amplifiers. This paper investigates the quantum-noise-limited performance of optical binary phase-shift keying transmission using gain-saturated phase-sensitive amplifiers (PSAs) as optical repeaters. It is shown that coherent state transmission, where ultimately clean light in the classical sense is transmitted, and endless transmission, where the transmission distance is not restricted, are theoretically achievable under certain system conditions owing to the noise suppression effects of the gain-saturated PSA.

  • Power-Based Criteria for Signal Reconstruction Using 1-bit Resolution DACs in Massive MU-MIMO OFDM Downlink

    Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/02
      Vol:
    E104-B No:10
      Page(s):
    1299-1306

    The sum rate performance of nonlinier quantized precoding using Gibbs sampling are evaluated in a massive multiuser multiple-input multiple-output (MU-MIMO) system in this paper. Massive MU-MIMO is a key technology to handle the growth of data traffic. In a full digital massive MU-MIMO system, however, the resolution of digital-to-analogue converters (DACs) in transmit antenna branches have to be low to yield acceptable power consumption. Thus, a combinational optimization problem is solved for the nonlinier quantized precoding to determine transmit signals from finite alphabets output from low resolution DACs. A conventional optimization criterion minimizes errors between desired signals and received signals at user equipments (UEs). However, the system sum rate may decrease as it increases the transmit power. This paper proposes two optimization criteria that take the transmit power into account in order to maximize the sum rate. Mixed Gibbs sampling is applied to obtain the suboptimal solution of the nonlinear optimization problem. Numerical results obtained through computer simulations show that the two proposed criteria achieve higher sum rates than the conventional criterion. On the other hand, the sum rate criterion achieves the largest sum rate while it leads to less throughputs than the MMSE criterion on approximately 60% of subcarriers.

281-300hit(6809hit)