The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

201-220hit(6809hit)

  • New Family of Polyphase Sequences with Low Correlation from Galois Rings

    Linyan YU  Pinhui KE  Zuling CHANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1425-1428

    In this letter, we give a new construction of a family of sequences of period pk-1 with low correlation value by using additive and multiplicative characters over Galois rings. The new constructed sequence family has family size (M-1)(pk-1)rpkr(e-1) and alphabet size Mpe. Based on the characters sum over Galois rings, an upper bound on the correlation of this sequence family is presented.

  • Polar Code Based on Nested Rate Adaptation Sequence for BDS-3 Regional Short Message Communication

    Gang LI  Shuren GUO  Yi ZHOU  Zaixiu YANG  

     
    PAPER-Satellite Communications

      Pubricized:
    2022/04/20
      Vol:
    E105-B No:10
      Page(s):
    1280-1289

    Regional Short Message Communication (RSMC) service of BeiDou Navigation Satellite System (BDS) has been widely used in various fields. BDS-3 officially started to provide service in 2020, and the performance of RSMC service was greatly improved, which offers an opportunity for large-scale applications of RSMC in consumer electronic products. Due to the complex application scenarios, the low-cost and low-power of RSMC terminals, a better coding scheme is needed to improve performance. In this paper, we propose a new polar encoding scheme with low code rate and variable code length, which adopts Polarization Weight (PW) to generate the reliability sequence of Polar codes and use a Nested Rate Adaptation Sequence (NRAS) to realize rate adaption for the BDS-3 RSMC. The performance of encoding gain and decoding complexity is analyzed by simulation and experiments. The results validate the effective of this scheme. Compared with Turbo codes, the proposed polar codes scheme achieves about 0.5dB gain with about 50% decoding complexity when the information length including CRC is 128 and code rate is 1/2. The proposed polar codes scheme provides a good reference for further applications in BDS.

  • Communication Quality Estimation Observer: An Approach for Integrated Communication Quality Estimation and Control for Digital-Twin-Assisted Cyber-Physical Systems Open Access

    Ryogo KUBO  

     
    INVITED PAPER

      Pubricized:
    2022/04/14
      Vol:
    E105-B No:10
      Page(s):
    1139-1153

    Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.

  • Fast-Converging Constant Modulus Algorithm with Variable Step Size for Multibeam Massive MIMO

    Kentaro NISHIMORI  Kazuki MARUTA  Takefumi HIRAGURI  Hidehisa SHIOMI  

     
    PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1154-1161

    Multibeam massive multiple-input multiple-output (MIMO) configuration has been proposed that selects high-power beams in an analog part and uses a blind algorithm, such as the constant-modulus algorithm (CMA), in the digital part. The CMA does not require channel state information. However, when least-squares CMA (LS-CMA) is applied to a quadrature amplitude modulation signal whose amplitude changes, the interference cancellation effect decreases as the modulation order increases. In this paper, a variable-step-size-based CMA (VS-CMA), which modifies the step size of the steepest-descent CMA, is proposed as a blind adaptive algorithm to replace LS-CMA. The basic performance of VS-CMA, its success in cancelling interference, and its effectiveness in multibeam massive MIMO transmission are verified via simulation and compared with other blind algorithms such as independent component analysis, particularly when the data smoothing size is small.

  • Asynchronous NOMA Downlink Based on Single-Carrier Frequency-Domain Equalization

    Tomonari KURAYAMA  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1173-1180

    Non-orthogonal multiple access (NOMA) allows several users to multiplex in the power-domain to improve spectral efficiency. To further improve its performance, it is desirable to reduce inter-user interference (IUI). In this paper, we propose a downlink asynchronous NOMA (ANOMA) scheme applicable to frequency-selective channels. The proposed scheme introduces an intentional symbol offset between the multiplexed signals to reduce IUI, and it employs cyclic-prefixed single-carrier transmission with frequency-domain equalization (FDE) to reduce inter-symbol interference. We show that the mean square error for the FDE of the proposed ANOMA scheme is smaller than that of a conventional NOMA scheme. Simulation results show that the proposed ANOMA with appropriate power allocation achieves a better sum rate compared to the conventional NOMA.

  • Design and Integration of Beyond-10MHz High Switching Frequency DC-DC Converter Open Access

    Kousuke MIYAJI  

     
    INVITED PAPER

      Pubricized:
    2022/04/20
      Vol:
    E105-C No:10
      Page(s):
    521-533

    There are continuous and strong demands for the DC-DC converter to reduce the size of passive components and increase the system power density. Advances in CMOS processes and GaN FETs enabled the switching frequency of DC-DC converters to be beyond 10MHz. The advancements of 3-D integrated magnetics will further reduce the footprint. In this paper, the overview of beyond-10MHz DC-DC converters will be provided first, and our recent achievements are introduced focusing on 3D-integration of Fe-based metal composite magnetic core inductor, and GaN FET control designs.

  • Study on Electron Emission from Phosphorus δ-Doped Si-QDs/Undoped Si-QDs Multiple-Stacked Structures

    Katsunori MAKIHARA  Tatsuya TAKEMOTO  Shuji OBAYASHI  Akio OHTA  Noriyuki TAOKA  Seiichi MIYAZAKI  

     
    PAPER

      Pubricized:
    2022/04/26
      Vol:
    E105-C No:10
      Page(s):
    610-615

    We have fabricated two-tiered heterostructures consisting of phosphorus δ-doped Si quantum dots (Si-QDs) and undoped Si-QDs and studied their electron field emission properties. Electron emission was observed from the P-doped Si-QDs stack formed on the undoped Si-QDs stack by applying a forward bias of ∼6 V, which was lower than that for pure Si-QDs stack. This result is attributed to electric field concentration on the upper P-doped Si-QD layers beneath the layers of the undoped Si-QDs stack due to the introduction of phosphorus atom into the Si-QDs, which was positively charged due to the ionized P donor. The results lead to the development of planar-type electron emission devices with a low-voltage operation.

  • Joint Channel and Power Assignment for UAV Swarm Communication Based on Multi-Agent DRL

    Jie LI  Sai LI  Abdul Hayee SHAIKH  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/13
      Vol:
    E105-B No:10
      Page(s):
    1249-1257

    In this manuscript, we propose a joint channel and power assignment algorithm for an unmanned aerial vehicle (UAV) swarm communication system based on multi-agent deep reinforcement learning (DRL). Regarded as an agent, each UAV to UAV (U2U) link can choose the optimal channel and power according to the current situation after training is successfully completed. Further, a mixing network is introduced based on DRL, where Q values of every single agent are non-linearly mapped, and we call it the QMIX algorithm. As it accesses state information, QMIX can learn to enrich the joint action value function. The proposed method can be used for both unicast and multicast scenarios. Experiments show that each U2U link can be trained to meet the constraints of UAV communication and minimize the interference to the system. For unicast communication, the communication rate is increased up to 15.6% and 8.9% using the proposed DRL method compared with the well-known random and adaptive methods, respectively. For multicast communication, the communication rate is increased up to 6.7% using the proposed QMIX method compared with the DRL method and 13.6% using DRL method compared with adaptive method. Besides, the successful transmission probability can maintain a high level.

  • On the Sum-of-Squares of Differential Distribution Table for (n, n)-Functions

    Rong CHENG  Yu ZHOU  Xinfeng DONG  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1322-1329

    S-box is one of the core components of symmetric cryptographic algorithms, but differential distribution table (DDT) is an important tool to research some properties of S-boxes to resist differential attacks. In this paper, we give a relationship between the sum-of-squares of DDT and the sum-of-squares indicator of (n, m)-functions based on the autocorrelation coefficients. We also get some upper and lower bounds on the sum-of-squares of DDT of balanced (n, m)-functions, and prove that the sum-of-squares of DDT of (n, m)-functions is affine invariant under affine affine equivalent. Furthermore, we obtain a relationship between the sum-of-squares of DDT and the signal-to-noise ratio of (n, m)-functions. In addition, we calculate the distributions of the sum-of-squares of DDT for all 3-bit S-boxes, the 4-bit optimal S-boxes and all 302 balanced S-boxes (up to affine equivalence), data experiments verify our results.

  • Experimental and Numerical Analysis of Ultrahigh-Speed Coherent Nyquist Pulse Transmission with Low-Nonlinearity Dispersion Compensator

    Kosuke KIMURA  Masato YOSHIDA  Keisuke KASAI  Toshihiko HIROOKA  Masataka NAKAZAWA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1014-1022

    In this paper, we report an experimental and numerical analysis of ultrahigh-speed coherent Nyquist pulse transmission. First, we describe a low-nonlinearity dispersion compensator for ultrahigh-speed coherent Nyquist pulse transmission; it is composed of a chirped fiber Bragg grating (CFBG) and a liquid crystal on silicon (LCoS) device. By adopting CFBG instead of inverse dispersion fiber, the nonlinearity in a 160km transmission line was more than halved. Furthermore, by eliminating the group delay fluctuation of the CFBG with an LCoS device, the residual group delay was reduced to as low as 1.42ps over an 11nm bandwidth. Then, by using the transmission line with the newly constructed low-nonlinearity dispersion compensator, we succeeded in improving the BER performance of single-channel 15.3Tbit/s-160km transmission by one-third compared with that of a conventional dispersion-managed transmission line and obtained a spectral efficiency of 8.7bit/s/Hz. Furthermore, we numerically analyzed the BER performance of its Nyquist pulse transmission. The numerical results showed that the nonlinear impairment in the transmission line is the main factor limiting the transmission performance in a coherent Nyquist pulse transmission, which becomes more significant at higher baud rates.

  • Asynchronous Periodic Interference Signals Cancellation in Frequency Domain

    Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/24
      Vol:
    E105-B No:9
      Page(s):
    1087-1096

    This paper proposes a novel interference cancellation technique that prevents radio receivers from degrading due to periodic interference signals caused by electromagnetic waves emitted from high power circuits. The proposed technique cancels periodic interference signals in the frequency domain, even if the periodic interference signals drift in the time domain. We propose a drift estimation based on a super resolution technique such as ESPRIT. Moreover, we propose a sequential drift estimation to enhance the drift estimation performance. The proposed technique employs a linear filter based on the minimum mean square error criterion with assistance of the estimated drifts for the interference cancellation. The performance of the proposed technique is confirmed by computer simulation. The proposed technique achieves a gain of more than 40dB at the higher frequency part in the band. The proposed canceler achieves such superior performance, if the parameter sets are carefully selected. The proposed sequential drift estimation relaxes the parameter constraints, and enables the proposed cancellation to achieve the performance upper bound.

  • Resource Efficient Top-K Sorter on FPGA

    Binhao HE  Meiting XUE  Shubiao LIU  Feng YU  Weijie CHEN  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/03/02
      Vol:
    E105-A No:9
      Page(s):
    1372-1376

    The top-K sorting is a variant of sorting used heavily in applications such as database management systems. Recently, the use of field programmable gate arrays (FPGAs) to accelerate sorting operation has attracted the interest of researchers. However, existing hardware top-K sorting algorithms are either resource-intensive or of low throughput. In this paper, we present a resource-efficient top-K sorting architecture that is composed of L cascading sorting units, and each sorting unit is composed of P sorting cells. K=PL largest elements are produced when a variable length input sequence is processed. This architecture can operate at a high frequency while consuming fewer resources. The experimental results show that our architecture achieved a maximum 1.2x throughput-to-resource improvement compared to previous studies.

  • Highly-Accurate and Real-Time Speech Measurement for Laser Doppler Vibrometers

    Yahui WANG  Wenxi ZHANG  Zhou WU  Xinxin KONG  Yongbiao WANG  Hongxin ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1568-1580

    Laser Doppler Vibrometers (LDVs) enable the acquisition of remote speech signals by measuring small-scale vibrations around a target. They are now widely used in the fields of information acquisition and national security. However, in remote speech detection, the coherent measurement signal is subject to environmental noise, making detecting and reconstructing speech signals challenging. To improve the detection distance and speech quality, this paper proposes a highly accurate real-time speech measurement method that can reconstruct speech from noisy coherent signals. First, the I/Q demodulation and arctangent phase discrimination are used to extract the phase transformation caused by the acoustic vibration from coherent signals. Then, an innovative smoothness criterion and a novel phase difference-based dynamic bilateral compensation phase unwrapping algorithm are used to remove any ambiguity caused by the arctangent phase discrimination in the previous step. This important innovation results in the highly accurate detection of phase jumps. After this, a further innovation is used to enhance the reconstructed speech by applying an improved waveform-based linear prediction coding method, together with adaptive spectral subtraction. This removes any impulsive or background noise. The accuracy and performance of the proposed method were validated by conducting extensive simulations and comparisons with existing techniques. The results show that the proposed algorithm can significantly improve the measurement of speech and the quality of reconstructed speech signals. The viability of the method was further assessed by undertaking a physical experiment, where LDV equipment was used to measure speech at a distance of 310m in an outdoor environment. The intelligibility rate for the reconstructed speech exceeded 95%, confirming the effectiveness and superiority of the method for long-distance laser speech measurement.

  • Rate-Encoding A/D Converter Based on Spiking Neuron Model with Rectangular Wave Threshold Signal

    Yusuke MATSUOKA  Hiroyuki KAWASAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2022/02/21
      Vol:
    E105-A No:8
      Page(s):
    1101-1109

    This paper proposes and characterizes an A/D converter (ADC) based on a spiking neuron model with a rectangular threshold signal. The neuron repeats an integrate-and-fire process and outputs a superstable spike sequence. The dynamics of this system are closely related to those of rate-encoding ADCs. We propose an ADC system based on the spiking neuron model. We derive a theoretical parameter region in a limited time interval of the digital output sequence. We analyze the conversion characteristics in this region and verify that they retain the monotonic increase and rate encoding of an ADC.

  • New Constructions of Quadriphase Periodic Almost-Complementary Pairs

    Tao YU  Yang YANG  Hua MENG  Yong WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2022/02/04
      Vol:
    E105-A No:8
      Page(s):
    1165-1169

    Almost-complementary pairs (ACPs) are sequence pairs whose autocorrelations sum up to zero at all but one non-zero time-shifts. Periodic ACPs (P-ACPs) display almost similar correlation properties to that of the periodic complementary pairs (PCPs). In this letter, we propose systematic constructions of quadriphase P-ACPs (QP-ACPs) from aperiodic (periodic) complementary pairs and almost perfect binary (quadriphase) sequences. The proposed construction gives QP-ACPs of new lengths which are not covered in the literature.

  • Label-Adversarial Jointly Trained Acoustic Word Embedding

    Zhaoqi LI  Ta LI  Qingwei ZHAO  Pengyuan ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/05/20
      Vol:
    E105-D No:8
      Page(s):
    1501-1505

    Query-by-example spoken term detection (QbE-STD) is a task of using speech queries to match utterances, and the acoustic word embedding (AWE) method of generating fixed-length representations for speech segments has shown high performance and efficiency in recent work. We propose an AWE training method using a label-adversarial network to reduce the interference information learned during AWE training. Experiments demonstrate that our method achieves significant improvements on multilingual and zero-resource test sets.

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • Deep Learning Based Low Complexity Symbol Detection and Modulation Classification Detector

    Chongzheng HAO  Xiaoyu DANG  Sai LI  Chenghua WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/24
      Vol:
    E105-B No:8
      Page(s):
    923-930

    This paper presents a deep neural network (DNN) based symbol detection and modulation classification detector (SDMCD) for mixed blind signals detection. Unlike conventional methods that employ symbol detection after modulation classification, the proposed SDMCD can perform symbol recovery and modulation identification simultaneously. A cumulant and moment feature vector is presented in conjunction with a low complexity sparse autoencoder architecture to complete mixed signals detection. Numerical results show that SDMCD scheme has remarkable symbol error rate performance and modulation classification accuracy for various modulation formats in AWGN and Rayleigh fading channels. Furthermore, the proposed detector has robust performance under the impact of frequency and phase offsets.

  • Bitstream-Quality-Estimation Model for Tile-Based VR Video Streaming Services Open Access

    Masanori KOIKE  Yuichiro URATA  Kazuhisa YAMAGISHI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    1002-1013

    Tile-based virtual reality (VR) video consists of high-resolution tiles that are displayed in accordance with the users' viewing directions and a low-resolution tile that is the entire VR video and displayed when users change their viewing directions. Whether users perceive quality degradation when watching tile-based VR video depends on high-resolution tile size, the quality of high- and low-resolution tiles, and network condition. The display time of low-resolution tile (hereafter delay) affects users' perceived quality because longer delay makes users watch the low-resolution tiles longer. Since these degradations of low-resolution tiles markedly affect users' perceived quality, these points have to be considered in the quality-estimation model. Therefore, we propose a bitstream-quality-estimation model for tile-based VR video streaming services and investigate the effect of bitstream parameters and delay on tile-based VR video quality. Subjective experiments on several videos of different qualities and a comparison between other video quality-estimation models were conducted. In this paper, we prove that the proposed model can improve the quality-estimation accuracy by using the high- and low-resolution tiles' quantization parameters, resolution, framerate, and delay. Subjective experimental results show that the proposed model can estimate the quality of tile-based VR video more accurately than other video quality-estimation models.

  • Linear Complexity of a Class of Quaternary Sequences with Optimal Autocorrelation

    Lu ZHAO  Bo XU  Tianqing CAO  Jiao DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/01/13
      Vol:
    E105-A No:7
      Page(s):
    1070-1081

    A unified construction for yielding optimal and balanced quaternary sequences from ideal/optimal balanced binary sequences was proposed by Zeng et al. In this paper, the linear complexity over finite field 𝔽2, 𝔽4 and Galois ring ℤ4 of the quaternary sequences are discussed, respectively. The exact values of linear complexity of sequences obtained by Legendre sequence pair, twin-prime sequence pair and Hall's sextic sequence pair are derived.

201-220hit(6809hit)