The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

141-160hit(6809hit)

  • New Bounds of No-Hit-Zone Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    803-806

    In quasi-synchronous FH multiple-access (QS-FHMA) systems, no-hit-zone frequency-hopping sequences (NHZ-FHSs) can offer interference-free FHMA performance. But, outside the no-hit-zone (NHZ), the Hamming correlation of traditional NHZ-FHZs maybe so large that the performance becomes not good. And in high-speed mobile environment, Doppler shift phenomenon will appear. In order to ensure the performance of FHMA, it is necessary to study the NHZ-FHSs in the presence of transmission delay and frequency offset. In this paper, We derive a lower bound on the maximum time-frequency two-dimensional Hamming correlation outside of the NHZ of NHZ-FHSs. The Zeng-Zhou-Liu-Liu bound is a particular situation of the new bound for frequency shift is zero.

  • Blind Carrier Frequency Offset Estimation in Weighted Fractional Fourier Transform Communication Systems

    Toshifumi KOJIMA  Kouji OHUCHI  

     
    LETTER

      Pubricized:
    2022/11/07
      Vol:
    E106-A No:5
      Page(s):
    807-811

    In this study, a blind carrier frequency offset (CFO) estimation method is proposed using the time-frequency symmetry of the transmitted signals of a weighted Fourier transform (WFrFT) communication system. Blind CFO estimation is achieved by focusing on the property that results in matching the signal waveforms before and after the Fourier transform when the WFrFT parameter is set to a certain value. Numerical simulations confirm that the proposed method is more resistant to Rayleigh fading than the conventional estimation methods.

  • Shared Backup Allocation Model of Middlebox Based on Workload-Dependent Failure Rate

    Han ZHANG  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2022/11/11
      Vol:
    E106-B No:5
      Page(s):
    427-438

    With the network function virtualization technology, a middlebox can be deployed as software on commercial servers rather than on dedicated physical servers. A backup server is necessary to ensure the normal operation of the middlebox. The workload can affect the failure rate of backup server; the impact of workload-dependent failure rate on backup server allocation considering unavailability has not been extensively studied. This paper proposes a shared backup allocation model of middlebox with consideration of the workload-dependent failure rate of backup server. Backup resources on a backup server can be assigned to multiple functions. We observe that a function has four possible states and analyze the state transitions within the system. Through the queuing approach, we compute the probability of each function being available or unavailable for a certain assignment, and obtain the unavailability of each function. The proposed model is designed to find an assignment that minimizes the maximum unavailability among functions. We develop a simulated annealing algorithm to solve this problem. We evaluate and compare the performances of proposed and baseline models under different experimental conditions. Based on the results, we observe that, compared to the baseline model, the proposed model reduces the maximum unavailability by an average of 29% in our examined cases.

  • Metadata-Based Quality-Estimation Model for Tile-Based Omnidirectional Video Streaming Open Access

    Yuichiro URATA  Masanori KOIKE  Kazuhisa YAMAGISHI  Noritsugu EGI  

     
    PAPER-Multimedia Systems for Communications

      Pubricized:
    2022/11/15
      Vol:
    E106-B No:5
      Page(s):
    478-488

    In this paper, a metadata-based quality-estimation model is proposed for tile-based omnidirectional video streaming services, aiming to realize quality monitoring during service provision. In the tile-based omnidirectional video (ODV) streaming services, the ODV is divided into tiles, and the high-quality tiles and the low-quality tiles are distributed in accordance with the user's viewing direction. When the user changes the viewing direction, the user temporarily watches video with the low-quality tiles. In addition, the longer the time (delay time) until the high-quality tile for the new viewing direction is downloaded, the longer the viewing time of video with the low-quality tile, and thus the delay time affects quality. From the above, the video quality of the low-quality tiles and the delay time significantly impact quality, and these factors need to be considered in the quality-estimation model. We develop quality-estimation models by extending the conventional quality-estimation models for 2D adaptive streaming. We also show that the quality-estimation model using the bitrate, resolution, and frame rate of high- and low-quality tiles and that the delay time has sufficient estimation accuracy based on the results of subjective quality evaluation experiments.

  • Design and Analysis of Si/CaF2 Near-Infrared (λ∼1.7µm) DFB Quantum Cascade Laser for Silicon Photonics

    Gensai TEI  Long LIU  Masahiro WATANABE  

     
    PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/11/04
      Vol:
    E106-C No:5
      Page(s):
    157-164

    We have designed a near-infrared wavelength Si/CaF2 DFB quantum cascade laser and investigated the possibility of single-mode laser oscillation by analysis of the propagation mode, gain, scattering time of Si quantum well, and threshold current density. As the waveguide and resonator, a slab-type waveguide structure with a Si/CaF2 active layer sandwiched by SiO2 on a Si (111) substrate and a grating structure in an n-Si conducting layer were assumed. From the results of optical propagation mode analysis, by assuming a λ/4-shifted bragg waveguide structure, it was found that the single vertical and horizontal TM mode propagation is possible at the designed wavelength of 1.70µm. In addition, a design of the active layer is proposed and its current injection capability is roughly estimated to be 25.1kA/cm2, which is larger than required threshold current density of 1.4kA/cm2 calculated by combining analysis results of the scattering time, population inversion, gain of quantum cascade lasers, and coupling theory of a Bragg waveguide. The results strongly indicate the possibility of single-mode laser oscillation.

  • Experimental Characterization of Resonant Tunneling Chaos Generator Circuits in Microwave Frequency Range

    Umer FAROOQ  Masayuki MORI  Koichi MAEZAWA  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/11/14
      Vol:
    E106-C No:5
      Page(s):
    174-183

    We achieved detailed characterization of resonant tunneling chaos generator circuits in microwave frequency range. The circuit is analogous to Duffing oscillator, where the third-order nonlinear potential term is emulated by the nonlinear current-voltage curve of the resonant tunneling diode. The circuit includes a periodic reset mechanism to output identical chaos signal, which is essential to observe chaos signal on a sampling oscilloscope. Though this was shown to be effective in our previous papers, the length of the waveforms to observe is limited to rather short period, and it was unclear if this technique can be used for detailed characterization of such high-frequency chaos. In this paper, we improved the circuit design to observe longer waveforms, and demonstrated that the detailed characterization is possible using this periodic resetting technique with a sampling oscilloscope. The hybrid integration scheme is also used in this paper, which allows the easiest and shortest way to mimic a circuit as per circuit design, and precise estimation of circuit parameters aiming to eliminate circuit-related abnormalities. We provide deep insight into the dynamics associated with our circuit, starting from the single period, double period, chaos, and triple period regimes, by extracting power spectra, return maps, phase portraits, and bifurcation diagrams from acquired time series using sampling oscilloscope. Our method to study microwave chaotic signals can be applied to much higher frequency ranges, such as THz frequency range.

  • Over Octave Hybrid Continuous Modes Power Amplifier Design Based on Modified Real Frequency Technique

    Guohua LIU  Huabang ZHONG  Zhong ZHAO  Zhiqun CHENG  Minghui YOU  

     
    BRIEF PAPER-Electronic Circuits

      Pubricized:
    2022/11/01
      Vol:
    E106-C No:5
      Page(s):
    188-192

    In this paper, a design method for an over octave hybrid continuous mode power amplifier (PA) based on modified real frequency technique (MRFT) is proposed. The extended continuous class-F/F-1 modes greatly expand the design space, which provides the possibility of over octave design, the optimal impedances at internal current-generator (I-Gen) plane and package plane are investigated. Then a novel broadband matching network based on MRFT is presented for impedance match. To verify the proposed methodology, an over octave PA with radial stub is fabricated and measured. The PA achieves a bandwidth of 133% from 0.8GHz to 4GHz, over this frequency range, the drain efficiency is 58.3-68.7% and large-signal gain is greater than 9.6dB.

  • A Visual Question Answering Network Merging High- and Low-Level Semantic Information

    Huimin LI  Dezhi HAN  Chongqing CHEN  Chin-Chen CHANG  Kuan-Ching LI  Dun LI  

     
    PAPER-Core Methods

      Pubricized:
    2022/01/06
      Vol:
    E106-D No:5
      Page(s):
    581-589

    Visual Question Answering (VQA) usually uses deep attention mechanisms to learn fine-grained visual content of images and textual content of questions. However, the deep attention mechanism can only learn high-level semantic information while ignoring the impact of the low-level semantic information on answer prediction. For such, we design a High- and Low-Level Semantic Information Network (HLSIN), which employs two strategies to achieve the fusion of high-level semantic information and low-level semantic information. Adaptive weight learning is taken as the first strategy to allow different levels of semantic information to learn weights separately. The gate-sum mechanism is used as the second to suppress invalid information in various levels of information and fuse valid information. On the benchmark VQA-v2 dataset, we quantitatively and qualitatively evaluate HLSIN and conduct extensive ablation studies to explore the reasons behind HLSIN's effectiveness. Experimental results demonstrate that HLSIN significantly outperforms the previous state-of-the-art, with an overall accuracy of 70.93% on test-dev.

  • Fish Detecting Using YOLOv4 and CVAE in Aquaculture Ponds with a Non-Uniform Strong Reflection Background

    Meng ZHAO  Junfeng WU  Hong YU  Haiqing LI  Jingwen XU  Siqi CHENG  Lishuai GU  Juan MENG  

     
    PAPER-Smart Agriculture

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:5
      Page(s):
    715-725

    Accurate fish detection is of great significance in aquaculture. However, the non-uniform strong reflection in aquaculture ponds will affect the precision of fish detection. This paper combines YOLOv4 and CVAE to accurately detect fishes in the image with non-uniform strong reflection, in which the reflection in the image is removed at first and then the reflection-removed image is provided for fish detecting. Firstly, the improved YOLOv4 is applied to detect and mask the strong reflective region, to locate and label the reflective region for the subsequent reflection removal. Then, CVAE is combined with the improved YOLOv4 for inferring the priori distribution of the Reflection region and restoring the Reflection region by the distribution so that the reflection can be removed. For further improving the quality of the reflection-removed images, the adversarial learning is appended to CVAE. Finally, YOLOV4 is used to detect fishes in the high quality image. In addition, a new image dataset of pond cultured takifugu rubripes is constructed,, which includes 1000 images with fishes annotated manually, also a synthetic dataset including 2000 images with strong reflection is created and merged with the generated dataset for training and verifying the robustness of the proposed method. Comprehensive experiments are performed to compare the proposed method with the state-of-the-art fish detecting methods without reflection removal on the generated dataset. The results show that the fish detecting precision and recall of the proposed method are improved by 2.7% and 2.4% respectively.

  • New Binary Sequences Derived from Euler Quotients Modulo pq and Their Generalizations

    Jiang MA  Jun ZHANG  Yanguo JIA  Xiumin SHEN  

     
    PAPER-Coding Theory

      Pubricized:
    2022/09/30
      Vol:
    E106-A No:4
      Page(s):
    657-664

    Pseudorandom sequences with large linear complexity can resist the linear attack. The trace representation plays an important role in analysis and design of pseudorandom sequences. In this letter, we present the construction of a family of new binary sequences derived from Euler quotients modulo pq, where pq is a product of two primes and p divides q-1. Firstly, the linear complexity of the sequences are investigated. It is proved that the sequences have larger linear complexity and can resist the attack of Berlekamp-Massey algorithm. Then, we give the trace representation of the proposed sequences by determining the corresponding defining pair. Moreover, we generalize the result to the Euler quotients modulo pmqn with m≤n. Results indicate that the generalized sequences still have high linear complexity. We also give the trace representation of the generalized sequences by determining the corresponding defining pair. The result will be helpful for the implementation and the pseudorandom properties analysis of the sequences.

  • A QR Decomposition Algorithm with Partial Greedy Permutation for Zero-Forcing Block Diagonalization

    Shigenori KINJO  Takayuki GAMOH  Masaaki YAMANAKA  

     
    PAPER-Communication Theory and Signals

      Pubricized:
    2022/10/18
      Vol:
    E106-A No:4
      Page(s):
    665-673

    A new zero-forcing block diagonalization (ZF-BD) scheme that enables both a more simplified ZF-BD and further increase in sum rate of MU-MIMO channels is proposed in this paper. The proposed scheme provides the improvement in BER performance for equivalent SU-MIMO channels. The proposed scheme consists of two components. First, a permuted channel matrix (PCM), which is given by moving the submatrix related to a target user to the bottom of a downlink MIMO channel matrix, is newly defined to obtain a precoding matrix for ZF-BD. Executing QR decomposition alone for a given PCM provides null space for the target user. Second, a partial MSQRD (PMSQRD) algorithm, which adopts MSQRD only for a target user to provide improvement in bit rate and BER performance for the user, is proposed. Some numerical simulations are performed, and the results show improvement in sum rate performance of the total system. In addition, appropriate bit allocation improves the bit error rate (BER) performance in each equivalent SU-MIMO channel. A successive interference cancellation is applied to achieve further improvement in BER performance of user terminals.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • Post-Processing of Iterative Estimation and Cancellation Scheme for Clipping Noise in OFDM Systems

    Kee-Hoon KIM  Chanki KIM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/09/30
      Vol:
    E106-B No:4
      Page(s):
    352-358

    Clipping is an efficient and simple method that can reduce the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals. However, clipping causes in-band distortion referred to as clipping noise. To resolve this problem, a novel iterative estimation and cancellation (IEC) scheme for clipping noise is one of the most popular schemes because it can significantly improve the performance of clipped OFDM systems. However, IEC exploits detected symbols at the receiver to estimate the clipping noise in principle and the detected symbols are not the sufficient statistic in terms of estimation theory. In this paper, we propose the post-processing technique of IEC, which fully exploits given sufficient statistic at the receiver and thus further enhances the performance of a clipped OFDM system as verified by simulations.

  • A Beam Search Method with Adaptive Beam Width Control Based on Area Size for Initial Access

    Takuto ARAI  Daisei UCHIDA  Tatsuhiko IWAKUNI  Shuki WAI  Naoki KITA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/10/03
      Vol:
    E106-B No:4
      Page(s):
    359-366

    High gain antennas with narrow-beamforming are required to compensate for the high propagation loss expected in high frequency bands such as the millimeter wave and sub-terahertz wave bands, which are promising for achieving extremely high speeds and capacity. However using narrow-beamforming for initial access (IA) beam search in all directions incurs an excessive overhead. Using wide-beamforming can reduce the overhead for IA but it also shrinks the coverage area due to the lower beamforming gain. Here, it is assumed that there are some situations in which the required coverage distance differs depending on the direction from the antenna. For example, the distance to an floor for a ceiling-mounted antenna varies depending on the direction, and the distance to the obstruction becomes the required coverage distance for an antenna installation design that assumes line-of-sight. In this paper, we propose a novel IA beam search scheme with adaptive beam width control based on the distance to shield obstacles in each direction. Simulations and experiments show that the proposed method reduces the overhead by 20%-50% without shrinking the coverage area in shield environments compared to exhaustive beam search with narrow-beamforming.

  • Home Activity Recognition by Sounds of Daily Life Using Improved Feature Extraction Method

    João Filipe PAPEL  Tatsuji MUNAKA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-D No:4
      Page(s):
    450-458

    In recent years, with the aging of society, many kinds of research have been actively conducted to recognize human activity in a home to watch over the elderly. Multiple sensors for activity recognition are used. However, we need to consider privacy when using these sensors. One of the candidates of the sensors that keep privacy is a sound sensor. MFCC (Mel-Frequency Cepstral Coefficient) is widely used as a feature extraction algorithm for voice recognition. However, it is not suitable to apply conventional MFCC to activity recognition by sounds of daily life. We denote “sounds of daily life” as “life sounds” simply in this paper. The reason is that conventional MFCC does not extract well several features of life sounds that appear at high frequencies. This paper proposes the improved MFCC and reports the evaluation results of activity recognition by machine learning SVM (Support Vector Machine) using features extracted by improved MFCC.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • A Generic Construction of CCA-Secure Identity-Based Encryption with Equality Test against Insider Attacks

    Keita EMURA  Atsushi TAKAYASU  

     
    PAPER

      Pubricized:
    2022/05/30
      Vol:
    E106-A No:3
      Page(s):
    193-202

    Identity-based encryption with equality test (IBEET) is a generalization of the traditional identity-based encryption (IBE) and public key searchable encryption, where trapdoors enable users to check whether two ciphertexts of distinct identities are encryptions of the same plaintext. By definition, IBEET cannot achieve indistinguishability security against insiders, i.e., users who have trapdoors. To address this issue, IBEET against insider attacks (IBEETIA) was later introduced as a dual primitive. While all users of IBEETIA are able to check whether two ciphertexts are encryptions of the same plaintext, only users who have tokens are able to encrypt plaintexts. Hence, IBEETIA is able to achieve indistinguishability security. On the other hand, the definition of IBEETIA weakens the notion of IBE due to its encryption inability. Nevertheless, known schemes of IBEETIA made use of rich algebraic structures such as bilinear groups and lattices. In this paper, we propose a generic construction of IBEETIA without resorting to rich algebraic structures. In particular, the only building blocks of the proposed construction are symmetric key encryption and pseudo-random permutations in the standard model. If a symmetric key encryption scheme satisfies CCA security, our proposed IBEETIA scheme also satisfies CCA security.

  • Perfectly Secure Oblivious Priority Queue

    Atsunori ICHIKAWA  Wakaha OGATA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:3
      Page(s):
    272-280

    An Oblivious Priority Queue (OPQ) is a cryptographic primitive that enables a client to outsource its data to a dishonest server, and also to securely manage the data according to a priority queue algorithm. Though the first OPQ achieves perfect security, it supports only two operations; Inserting an element and extracting the top-priority element, which are the minimal requirement for a priority queue. In addition, this OPQ allows an adversary to observe operations in progress, which leaks the exact number of elements in the data structure. On the other hand, there are many subsequent works for OPQs that implement additional operations of a priority queue, hide the running operations, and improve efficiency. Though the recent works realize optimal efficiency, all of them achieve only statistical or computational security. Aiming to reconcile perfect security of the first OPQ with all functions (including the operation hiding) supported by recent OPQs, we construct a novel perfectly secure OPQ that can simulate the following operations while hiding which one is in progress; Inserting an element, extracting the top-priority one, deleting an element, and modifying the priority of an element. The efficiency of our scheme is O(log2 N), which is larger than that of the best known statistically secure OPQ but is the same as the known perfectly secure scheme.

  • Information Leakage Through Passive Timing Attacks on RSA Decryption System

    Tomonori HIRATA  Yuichi KAJI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/08/16
      Vol:
    E106-A No:3
      Page(s):
    406-413

    A side channel attack is a means of security attacks that tries to restore secret information by analyzing side-information such as electromagnetic wave, heat, electric energy and running time that are unintentionally emitted from a computer system. The side channel attack that focuses on the running time of a cryptosystem is specifically named a “timing attack”. Timing attacks are relatively easy to carry out, and particularly threatening for tiny systems that are used in smart cards and IoT devices because the system is so simple that the processing time would be clearly observed from the outside of the card/device. The threat of timing attacks is especially serious when an attacker actively controls the input to a target program. Countermeasures are studied to deter such active attacks, but the attacker still has the chance to learn something about the concealed information by passively watching the running time of the target program. The risk of passive timing attacks can be measured by the mutual information between the concealed information and the running time. However, the computation of the mutual information is hardly possible except for toy examples. This study focuses on three algorithms for RSA decryption, derives formulas of the mutual information under several assumptions and approximations, and calculates the mutual information numerically for practical security parameters.

  • Enumeration of Both-Ends-Fixed k-Ary Necklaces and Its Applications

    Hiroshi FUJISAKI  

     
    PAPER-Fundamentals of Information Theory

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:3
      Page(s):
    431-439

    We consider both-ends-fixed k-ary necklaces and enumerate all such necklaces of length n from the viewpoints of symbolic dynamics and β-expansions, where n and k(≥ 2) are natural numbers and β(> 1) is a real number. Recently, Sawada et al. proposed an efficient construction of k-ary de Bruijn sequence of length kn, which for each n ≥ 1, requires O(n) space but generates a single k-ary de Bruijn sequence of length kn in O(1)-amortized time per bit. Based on the enumeration of both-ends-fixed k-ary necklaces of length n, we evaluate auto-correlation values of the k-ary de Bruijn sequences of length kn constructed by Sawada et al. We also estimate the asymptotic behaviour of the obtained auto-correlation values as n tends to infinity.

141-160hit(6809hit)