The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

8581-8600hit(16314hit)

  • Detection of CMOS Open Node Defects by Frequency Analysis

    Hiroyuki MICHINISHI  Tokumi YOKOHIRA  Takuji OKAMOTO  Toshifumi KOBAYASHI  Tsutomu HONDO  

     
    LETTER-Dependable Computing

      Vol:
    E90-D No:3
      Page(s):
    685-687

    A method to detect open node defects that cannot be detected by the conventional IDDQ test method has previously been proposed employing a sinusoidal wave superposed on the DC supply voltage. The present paper proposes a strategy to improve the detectability of the test method by means of frequency analysis of the supply current. In this strategy, defects are detected by determining whether secondary harmonics of the sinusoidal wave exist in the supply current. The effectiveness of the method is confirmed by experiments on two CMOS NAND gate packages (SSIs).

  • Design and Operation of HTS SFQ Circuit Elements

    Koji TSUBONE  Hironori WAKANA  Yoshinobu TARUTANI  Seiji ADACHI  Yoshihiro ISHIMARU  Keiichi TANABE  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    570-578

    Single flux quantum (SFQ) circuit elements have been designed and fabricated using the YBa2Cu3O7-δ ramp-edge junction technology. Logic operations of SFQ circuit elements, such as a toggle flip-flop (T-FF), a set-reset flip-flop (RS-FF), and a 96-junction Josephson transmission line (JTL), were successfully demonstrated, and dc supply current margins were confirmed up to temperatures higher than 30 K. The circuit layout was improved in order to suppress the critical current (Ic) spread that appears during the junction fabrication procedure. By employing the new circuit layout rule, correct operations at temperatures from 27 K to 34 K with dc supply current margins wider than 7% were confirmed for the T-FF with a single output. Moreover, the maximum operating frequencies of T-FFs were measured to be 360 GHz at 4.2 K and 210 GHz at 41 K, which are substantially higher than the values for the circuits with the conventional layout. According to the simulation result, the maximum operating frequency at 40 K was expected to be approximately 50% of the characteristic frequency at a bit error rate (BER) less than 10-6.

  • Recent Developments in and Challenges of Photonic Networking Technologies Open Access

    Ken-ichi SATO  

     
    INVITED SURVEY PAPER

      Vol:
    E90-B No:3
      Page(s):
    454-467

    The transport network paradigm is changing as evidenced by IP convergence and the divergence of architectures and technologies. Harnessing the full power of light will spur the creation of new broadband and ubiquitous services networks. To attain this, however, not only must photonic technologies be optimized, but they must also be coordinated with complementary electrical technologies. With regard to photonic network design technologies, further developments are necessary including very large scale network design, quasi-dynamic network design, and multi-layer optical path network design.

  • Adaptive Linear Symbol Detection for OFDM Systems in Time-Frequency-Selective Fading Channels

    Hoojin LEE  Joonhyuk KANG  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    685-688

    Time-frequency-selective, equivalently time-variant multipath, fading channels in orthogonal frequency division multiplexing (OFDM) systems introduce intercarrier interference (ICI), resulting in severe performance degradation. To suppress the effect of ICI, several symbol detection methods have been proposed, all of which are based on the observation that most of the ICI's power is distributed near the desired subcarrier. However, these methods usually ignore the channel variation in a OFDM symbol block by fixing the number of considered ICI terms. Therefore, we propose a novel frequency-domain symbol detection method with moderate complexity, which adaptively determines the number of ICI terms within each OFDM symbol block.

  • Theoretical Simulation of the Mixing Performance of Distributed Superconducting Tunnel Junction Arrays at 1.2 THz

    Sheng-Cai SHI  Wen-Lei SHAN  Jing LI  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    556-565

    In this paper we focus on the numerical simulation of the mixing behaviors of distributed superconducting junction arrays at 1.2 THz. A novel type of superconducting tunnel junctions, i.e., NbN/AlN/Nb, which have a relatively high gap voltage (4.3 mV) and can reach a critical current density as high as several tens of kA/cm2, are proposed for this characterization along with conventional Nb/AlOx/Nb junctions. The former is incorporated with a NbN/SiO2/Al tuning circuit, and the latter with a Nb/SiO2/Al and a NbTiN/SiO2/Al tuning circuits. The noise performance, local-oscillator power requirement, IF bandwidth, and optimum embedding impedance are thoroughly characterized for the two types of distributed superconducting junction arrays.

  • Multilevel Storage in Phase-Change Memory

    Yang HONG  Yinyin LIN  Ting-Ao TANG  Bomy CHEN  

     
    PAPER-Storage Technology

      Vol:
    E90-C No:3
      Page(s):
    634-640

    A novel ratio-oriented definition based on 2T2R (Two transistors & two phase change resistors) phase change memory (PCM) cell structure is proposed to gain a high density by multilevel storage. In this novel solution, no reference is needed and good robustness remains still as conventional 2T2R, which is crucial when feature size scales to nanometer technology node. A behavioral SPICE model together with a preliminary simulation proves the idea to be feasible, and further optimization has been carried out. In addition, based on the ratio-oriented definition, a simpler and faster Error Control Coding (ECC) can be realized with n-Error-detection feasible.

  • Detection and Parameter Estimation of LFM Signal Using Integration of Fractional Gaussian Window Transform

    Jiaqiang LI  Ronghong JIN  JunPing GENG  Yu FAN  Wei MAO  

     
    PAPER-Sensing

      Vol:
    E90-B No:3
      Page(s):
    630-635

    In this paper, Integration of Fractional Gaussian Window transform (IFRGWT) is proposed for the parameter estimation of linear FM (LFM) signal; the proposal is based on the integration of the Fractional Fourier transform modified by Gaussian Window. The peak values can be detected by adjusting the standard deviation of Gaussian function and locating the optimal rotated angles. And also the parameters of the signal can be estimated well. As an application, detection and parameter estimation of multiple LFM signals are investigated in low signal-to-noise ratios (SNRs). The analytic results and simulations clearly demonstrate that the method is effective.

  • Inter-Domain QoS Routing: Optimal and Practical Study

    Rui PRIOR  Susana SARGENTO  

     
    PAPER-Network

      Vol:
    E90-B No:3
      Page(s):
    549-558

    This paper addresses the problem of inter-domain QoS routing with Service Level Agreements (SLA) for data transport between peering domains, using virtual-trunk type aggregates. The problem is formally stated and formulated in Integer Linear Programming. As a practical solution, we define the QoS_INFO extension to the BGP routing protocol, conveying three different QoS metrics (light load delay, assigned bandwidth and a congestion alarm), and a path selection algorithm using a combination of these metrics. We present simulation results of QoS_INFO, standard BGP, and BGP with the QoS_NLRI extension, and compare them with the optimal route set provided by the ILP formulation. The results show that our proposal yields better QoS than standard BGP or BGP with the QoS_NLRI extension, since it is able to efficiently avoid congested paths, and that the impact of QoS_INFO in route stability is relatively low.

  • Cost Analysis of BestRelay Retransmission Trees for Reliable Multicasting

    Chang-Han KIM  Jae-Heon YANG  Ikjun YEOM  

     
    PAPER-Network

      Vol:
    E90-B No:3
      Page(s):
    527-537

    In this paper, we address how to construct efficient retransmission trees for reliable multicast. Efficiency of retransmission trees mainly depends on locations of repairers, which are in charge of retransmitting lost packets. We propose an algorithm for each receiver to find a repairer for efficient recovery. The resulting tree for retransmission is organized by pairs of a receiver and a repairer which is the host "nearest" to the receiver among the multicast group members "nearer" to the sender. We formally prove that the proposed algorithm realizes reliable multicast with only constant times of a lower bound cost achievable through impractical router support. We also evaluate the algorithm through extensive simulations.

  • MLSE Detection with Blind Linear Prediction and Subcarriers Interpolation for DSTBC-OFDM Systems

    Seree WANICHPAKDEEDECHA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Communications

      Vol:
    E90-A No:3
      Page(s):
    562-570

    This paper proposes low-complexity blind detection for orthogonal frequency division multiplexing (OFDM) systems with the differential space-time block code (DSTBC) under time-varying frequency-selective Rayleigh fading. The detector employs the maximum likelihood sequence estimation (MLSE) in cooperation with the blind linear prediction (BLP), of which prediction coefficients are determined by the method of Lagrange multipliers. Interpolation of channel frequency responses is also applied to the detector in order to reduce the complexity. A complexity analysis and computer simulations demonstrate that the proposed detector can reduce the complexity to about a half, and that the complexity reduction causes only a loss of 1 dB in average Eb/N0 at BER of 10-3 when the prediction order and the degree of polynomial approximation are 2 and 1, respectively.

  • Power Estimation of Partitioned Register Files in a Clustered Architecture with Performance Evaluation

    Yukinori SATO  Ken-ichi SUZUKI  Tadao NAKAMURA  

     
    PAPER-VLSI Systems

      Vol:
    E90-D No:3
      Page(s):
    627-636

    High power consumption and slow access of enlarged and multiported register files make it difficult to design high performance superscalar processors. The clustered architecture, where the conventional monolithic register file is partitioned into several smaller register files, is expect to overcome the register file issues. In the clustered architecture, the more a monolithic register file is partitioned, the lower power and faster access register files can be realized. However, the partitioning causes losses of IPC (instructions per clock cycle) due to communication among register files. Therefore, degree of partitioning has a strong impact on the trade-off between power consumption and performance. In addition, the organization of partitioned register files also affects the trade-off. In this paper, we attempt to investigate appropriate degrees of partitioning and organizations of partitioned register files in a clustered architecture to assess the trade-off. From the results of execute-driven simulation, we find that the organization of register files and the degree of partitioning have a strong impact on the IPC, and the configuration with non-consistent register files can make use of the partitioned resources more effectively. From the results of register file access time and energy modeling, we find that the configurations with the highly partitioned non-consistent register file organization can receive benefit of the partitioning in terms of operating frequency and access energy of register files. Further, we examine relationship between IPS (instructions per second) and the product of IPC and operating frequency of register files. The results suggest that highly partitioned non-consistent configurations tends to gain more advantage in performance and power.

  • Statistical Analysis Driven Synthesis of Application Specific Asynchronous Systems

    Koji OHASHI  Mineo KANEKO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E90-A No:3
      Page(s):
    659-669

    In this paper, we propose an effective asynchronous datapath synthesis system to optimize statistical performance of asynchronous systems. The proposed algorithm is a heuristic method which simultaneously performs scheduling and resource binding. During the design process, decisions will be made based on the statistical schedule length analysis. It is demonstrated that asynchronous datapaths with the reduced mean total computation time are successfully synthesized for some datapath synthesis benchmarks.

  • Share Based-Channel Scheduling Algorithm for Multicast Video Delivery in WDM Optical Access Networks

    NamUk KIM  HyunHo YUN  Tae-Yeon KIM  Jeong-Ju YOO  Byong-Whi KIM  Minho KANG  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:3
      Page(s):
    499-507

    One of the important issues of future convergence service design in access networks is the ability to support different kinds of video delivery services for high quality IP-TV and multicast Video on Demand (VoD). In this paper, we address how to efficiently allocate video transmission channels based on multicast management technology in shared wavelength division multiplexed-passive optical network (WDM-PON). The shared WDM-PON introduces a broadcast downstream wavelength to support multicast videos in the point-to-point WDM-PON. Based on the shared architecture and multicast management technologies, the proposed dynamic channel scheduling arbitrates transmission channels of videos. It uses the information of broadcast video share to maximize traffic share in the optical layer. By maintaining high video share, proposed algorithm supports the maximum number of high quality multicast videos without serious service interference to real-time videos, delay-able videos, and internet services. In addition, it also reduces the packet processing burden and buffer size of the optical line termination (OLT). The analytic and simulation results validate the effectiveness of the proposed algorithm.

  • Jitter Tolerant Continuous-Time Sigma-Delta A-D Converter Employing In-Loop Low-Pass Filter

    Daisuke KOBAYASHI  Shigetaka TAKAGI  Nobuo FUJII  

     
    PAPER

      Vol:
    E90-A No:2
      Page(s):
    351-357

    This paper proposes a jitter tolerant continuous-time sigma-delta A-D converter structure as well as its design method. This method transforms a conventionally designed sigma-delta A-D converter into a jitter tolerant one. Jitter tolerance is provided by the modified feedback signal paths and a consequently inserted digital LPF. This method is applicable independently of a system order and the other specifications.

  • Ultra-Stable Regeneratively Mode-Locked Laser as an Opto-Electronic Microwave Oscillator and Its Application to Optical Metrology

    Masataka NAKAZAWA  Masato YOSHIDA  Toshihiko HIROOKA  

     
    INVITED PAPER

      Vol:
    E90-C No:2
      Page(s):
    443-449

    Ultrahigh-speed fiber lasers operating at up to 40 GHz offer a clean longitudinal comb and a narrow linewidth. This makes them suitable for applications including optical comb generation, ultrahigh-speed optical pulse transmission including PSK, and as opto-microwave oscillators. In this paper, we describe recent progress on ultrafast fiber lasers and their applications to optical metrology.

  • A Network Address Translation Approach to the Inbound Session Problem in Private Networks

    Ming-Deng HSIEH  Hung-Chun CHANG  Chien-Chao TSENG  Tsan-Pin WANG  

     
    PAPER-Networks

      Vol:
    E90-D No:2
      Page(s):
    482-489

    This paper proposes a Dynamic-Configurable NAT (DCNAT) approach to the inbound session problem for private networks behind NAT routers. DCNAT is a port-based NAT scheme that adopts a registration procedure for a host to register a session with a DCNAT router before originating a communication session to a host behind the DCNAT router. With the registration procedure, the DCNAT router can create NAT binding entries dynamically for address: port translation before the inbound session starts. Furthermore the dynamic creation of NAT binding entries makes DCNAT very flexible in supporting inbound accesses to a large number of services opened dynamically by the private nodes behind an NAT router. Although DCNAT requires minor modification to the originating host and the NAT router, it is highly suitable for proxy-based applications, such as web browsing, or instant message delivery.

  • Performance Analysis of Low-Delay Burst Transmission Scheme for Two-Way Based Optical Burst Switching Networks

    Hironori YOSHIDOME  Nobuo GOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E90-B No:2
      Page(s):
    209-216

    OBS is a realistic solution to the mismatch of the capacity of optical fiber and electrical switching in backbone photonic networks. One of the critical issues in OBS networks is to avoid burst contention at transit nodes. This problem induces the rapid growth of burst-transmission delay time under heavy traffic loads. In this paper, we propose a low-delay burst transmission scheme using burst segmentation at source node to suppress the growth in burst-transmission delay. In our scheme, a burst is divided and burst-transfer time is determined by the multiple information about reservation of other bursts at all transit nodes. We analyzed capabilities of the proposed scheme and found that it more efficiently suppresses the growth of the burst-transmission delay time in heavy traffic loads compared with some conventional signaling schemes.

  • Complexity-Reduced Adaptive Subchannel, Bit, and Power Allocation Algorithm and Its Throughput Analysis for Cellular OFDM System

    Kwang Man OK  Chung Gu KANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:2
      Page(s):
    269-276

    We introduce an adaptive subchannel, bit, and power allocation (ASBPA) algorithm to maximize the bandwidth efficiency of the mobile communication system that use orthogonal frequency division multiplexing (OFDM). We propose a suboptimal rate adaptive ASBPA algorithm that guarantees fairness in resource allocation and overcomes inherent co-channel interference (CCI) in the cellular system. Furthermore, we evaluate the maximum possible bandwidth efficiency of the cellular OFDM system achieved by the ASBPA algorithm which is practical to implement. Our simulation results show that the proposed algorithm outperforms the existing ones and achieves the cellular bandwidth efficiency of up to 5 b/s/Hz/cell. We also investigate some of the conditions that govern the bandwidth efficiency of the cellular OFDM system using the proposed ASBPA algorithm.

  • Optimization Design of Biorthogonal Wavelets for Embedded Image Coding

    Zaide LIU  Nanning ZHENG  Yuehu LIU  Huub VAN DE WETERING  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:2
      Page(s):
    569-578

    We present here a simple technique for parametrization of popular biorthogonal wavelet filter banks (BWFBs) having vanishing moments (VMs) of arbitrary multiplicity. Given a prime wavelet filter with VMs of arbitrary multiplicity, after formulating it as a trigonometric polynomial depending on two free parameters, we prove the existence of its dual filter based on the theory of Diophantine equation. The dual filter permits perfect reconstruction (PR) and also has VMs of arbitrary multiplicity. We then give the complete construction of two-parameter families of 17/11 and 10/18 BWFBs, from which any linear-phase 17/11 and 10/18 BWFB possessing desired features could be derived with ease by adjusting the free parameters. In particular, two previously unpublished BWFBs for embedded image coding are constructed, both have optimum coding gains and rational coef ficients. Extensive experiments show that our new BWFBs exhibit performance equal to Winger's W-17/11 and Villasenor's V-10/18 (superior to CDF-9/7 by Cohen et al. and Villasenor's V-6/10) for image compression, and yet require slightly lower computational costs.

  • Multi-Point Simulated Annealing with Adaptive Neighborhood

    Keiko ANDO  Mitsunori MIKI  Tomoyuki HIROYASU  

     
    PAPER-Optimizing Algorithms

      Vol:
    E90-D No:2
      Page(s):
    457-464

    When Simulated Annealing (SA) is applied to continuous optimization problems, the design of the neighborhood used in SA becomes important. Many experiments are necessary to determine an appropriate neighborhood range in each problem, because the neighborhood range corresponds to distance in Euclidean space and is decided arbitrarily. We propose Multi-point Simulated Annealing with Adaptive Neighborhood (MSA/AN) for continuous optimization problems, which determine the appropriate neighborhood range automatically. The proposed method provides a neighborhood range from the distance and the design variables of two search points, and generates candidate solutions using a probability distribution based on this distance in the neighborhood, and selects the next solutions from them based on the energy. In addition, a new acceptance judgment is proposed for multi-point SA based on the Metropolis criterion. The proposed method shows good performance in solving typical test problems.

8581-8600hit(16314hit)